Schlagwort-Archive: Pandemie

Die ominöse Herdenimmunität

Ist die Pandemie nach der Impfkampagne beendet?

Mit zunehmender Dauer der Corona-Pandemie kommt immer mehr die Frage nach der sogenannten Herdenimmunität auf. Wann endlich sind so viele geimpft bzw. von der Infektion genesen, dass eine weitere Ausbreitung des Virus ausgeschlossen werden kann? Oft werden für die Herdenimmunität Zahlen von 60 %, 67 % oder 70 % genannt. Doch gibt es eine Grenze bezüglich der Anzahl der Genesenen bzw. Geimpften, ab welcher keine Infektionsgefahr mehr besteht? Ist die Herdenimmunität eine scharfe epidemiologische Grenze? Kommt es zu keinen weiteren Neuinfektionen mehr, wenn 70 % oder 80 % geimpft sind?

Dazu später. Zunächst wollen wir die Zusammenhänge beleuchten und die Größe der Herdenimmunität ableiten.

Wie breitet sich das Virus aus?

Sei \(N\) die Größe der Population. Der Wert \(q\) steht für die Wahrscheinlichkeit, dass beim Kontakt mit einem Virusträger eine Übertragung stattfindet (was nur innerhalb der begrenzten Infektionszeit von ca. 7 bis 14 Tagen möglich ist). Ferner sei \(k\) die durchschnittliche Anzahl der Kontaktpersonen und \(k_{n}\) die durchschnittliche Anzahl der nicht infizierten Kontaktpersonen eines Erkrankten. Die Anzahl der Neuinfizierten im Intervall  bezeichnen wir mit \(a_{n}\). Die Gesamtanzahl aller bis zum Intervall \(n\) bereits Erkrankten in der Population nennen wir \(s_{n} \). Es gilt \(s_{n} = \sum_{i=0}^{n} a_{i} \).

Für die Anzahl der Neuinfizierten im Intervall \(n+1\)  erhalten wir nun:

\begin{equation} a_{n+1} = q \cdot k_{n} \cdot a_{n} \end{equation}

Wie kommen wir hierin zum Wert von \(k_{n}\)? Ganz einfach: Die Wahrscheinlichkeit dafür, dass eine zufällig aus der Gesamtpopulation gewählte Kontaktperson noch nicht infiziert ist, können wir leicht bestimmen. Es ist der Quotient \(\frac{N-s_{n}}{N} \). Demnach gilt

\begin{equation} k_{n} = \frac{N-s_{n}}{N} \cdot k \end{equation}

Zusammengefasst erhalten wir also

\begin{equation} a_{n+1} = q \cdot k \cdot \left (1 – \frac{s_{n}}{N} \right ) \cdot a_{n} \end{equation}

Das Produkt aus Kontaktanzahl und Infektionswahrscheinlichkeit wird oft auch als Reproduktionsfaktor oder R-Wert bezeichnet. Damit erhalten wir die Entwicklungsformel

\begin{equation} a_{n+1} = R \cdot \left (1 – \frac{s_{n}}{N} \right ) \cdot a_{n} \end{equation}

Bestimmung der Herdenimmunität

Mittels des Modells kann man leicht bestimmen, welche Bedingung erfüllt sein muss, damit die Anzahl der Neuinfektionen ab einem bestimmten Zeitintervall nicht weiter ansteigt. Dies ist dann der Fall, wenn \(\frac {a_{n+1}}{a_{n}}  \le 1\) ist, wenn also gilt, \( R \left (1 – \frac{s_{n}}{N} \right ) \le 1\). Daher lautet die Bedingung

\begin{equation} \frac{s_{n}} {N} \ge 1 – \frac{1}{R} \end{equation}

Wenn also der relative Anteil \(\frac{s_{n}} {N}\) der Genesenen (bzw. Geimpften, also der Immunisierten) an der Gesamtpopulation erstmals den Wert \(1-\frac{1}{R}\) übersteigt, gehen die Neuinfektionen zurück. Diese Grenze markiert den Wert der sogenannten Herdenimmunität \(H\) und es gilt demnach

\begin{equation} H = 1 – \frac{1}{R} \end{equation}

In Abb. 1 ist der Zusammenhang zwischen \(H\) und \(R\) grafisch dargestellt.

Theoretische Herdenimmunität in Abhängigkeit vom Reproduktionsfaktor (R-Wert).

Abbildung 1: Theoretische Herdenimmunität in Abhängigkeit vom Reproduktionsfaktor (R-Wert).

Mathematisch gesehen bestimmt \(H\) das Maximum im Kurvenverlauf der Neuinfektionen. Wenn der Anteil der Infizierten unterhalb der Grenze \(H\) liegt, dann steigen die Neuinfektionszahlen exponentiell, liegt sie oberhalb, dann fallen sie exponentiell. \(H\) ist damit zugleich der Wendepunkt im Kurvenverlauf der Gesamtanzahl der Infizierten: Wenn der Anteil der Infizierten \(\le H\) ist, wachsen die Infektionszahlen immer schneller an. Sobald die Grenze \(H\) überschritten wird, steigen die Infektionszahlen zwar immer noch, aber der Verlauf wird immer flacher: Es gibt kein exponentielles Wachstum mehr.

Der Wert von \(H\) definiert also die Grenze, ab welcher die exponentielle Ausbreitung des Virus bei einem gegebenem Reproduktionsfaktor \(R\) eingedämmt ist. Das Virus kann sich immer noch ausbreiten, dies vollzieht sich aber mit reduzierter Dynamik. Neuinfektionen in großer Anzahl sind indessen keineswegs ausgeschlossen.

Der Terminus Herden-Immunität ist insofern missverständlich, genaugenommen sogar falsch, da es in der Herde auch dann noch Neuinfektionen geben wird, wenn der Anteil der Genesenen und Geimpften den theoretischen Grenzwert der Herdenimmunität überschreitet. Mit anderen Worten: Die Herde als Ganzes ist NICHT immun, so lange nicht ALLE Herdenmitglieder immun sind. Der Begriff der Immunität bei einer Einzelperson ist demnach nicht übertragbar auf die Immunität der Gesellschaft als Ganzes.

Exemplarische Entwicklung der Infektionszahlen

Die prinzipiellen Zusammenhänge für einen Reproduktionsfaktor \(R = 1.5\) (entsprechend einer Herdenimmunität von 33 % bzw. 27,5 Mio. Menschen) sind in Abb. 2 visualisiert.

Verlauf der Neuinfektionen und der Gesamtanzahl der Immunisierten (hier: Genesene) auf Basis eines Reproduktionsfaktors R = 1,5 unter der Annahme von 1000 Neuinfektionen in der ersten Woche des Betrachtungszeitraums.

Abbildung 2: Verlauf der Neuinfektionen und der Gesamtanzahl der Immunisierten (hier: Genesene) auf Basis eines Reproduktionsfaktors R = 1,5 unter der Annahme von 1000 Neuinfektionen in der ersten Woche des Betrachtungszeitraums. Dieser R-Wert entspricht einem Wert für die Grenze der Herdenimmunität von 33 % bzw. 27,5 Mio. Menschen (grün gestrichelte horizontale Linie). Der Anteil der Genesenen überschreitet in der 25. Woche die Grenze der Herdenimmunität (grün gestrichelte vertikale Linie). Ab diesem Zeitpunkt geht die Anzahl der Neuinfektionen exponentiell zurück. Die Infektionszahlen steigen aber weiter an und erreichen über 51 Mio. Menschen.

Wie man der vorstehenden Ableitung entnimmt, handelt es sich bei der Herdenimmunität nicht um eine feste Grenze, sondern um einen von der Kontakthäufigkeit und der Infektionswahrscheinlichkeit bzw. vom Reproduktionsfaktor R abhängigen theoretischen Schwellwert.

Wenn der entsprechende Anteil der Population infiziert ist, kommt es zu keinem weiteren exponentiellen Wachstum mehr, vorausgesetzt, die Kontakthäufigkeit und die Infektionswahrscheinlichkeit erhöhen sich nicht. Bei einem Reproduktionsfaktor von 3 (also z.B. durchschnittlich 3 Kontakte mit einer Infektionswahrscheinlichkeit von q=100 %, oder 30 Kontakte mit q=10 %, liegt der Schwellwert für die Herdenimmunität bei exakt 2/3 bzw. 67 %. Erhöht sich aber der R-Wert auf 3,5, so ändert sich der Schwellwert des exponentiellen Wachstums auf 71 %. Bei R-Werten von 4 oder 5 liegt die Grenze entsprechend bei 75 % bzw. 80 %.

Was passiert mit den Infektionszahlen bei einer Erhöhung des R-Wertes?

Wir beleuchten die Fragestellung anhand eines Beispiels. In Abbildung 3 sind die Kurvenverläufe für die Neuinfektionen und die Gesamtanzahl der Infizierten für den exemplarischen Fall der Änderung des R-Wertes von 3 auf 4 aufgetragen. Ausgangsbasis für die Rechnung ist die bereits erreichte Herdenimmunität von 67 % bei einem Reproduktionsfaktor von 3. Es wird angenommen, dass sich der R-Wert in der ersten Woche des Betrachtungszeitraums auf 4 erhöht und zugleich 1000 Neuinfektionen stattfinden. Höhere R-Werte können temporär durchaus entstehen, z.B. aufgrund von Massenveranstaltungen.

Wenn der R-Wert (theoretisch) für 1 Jahr konstant bei 4 bleibt, steigen die Neuinfektionen in der Folge bis zur 30. Woche exponentiell an und erreichen dort ihr Maximum mit fast 1 Mio. Neuinfizierten. Danach nimmt die Anzahl der Neuinfektionen rapide ab und liegt nach einem Jahr wieder auf dem Niveau des Ausgangswertes. Die Gesamtanzahl der Immunisierten (Infizierte bzw. Geimpfte) steigt im gleichen Zeitraum aufgrund der Neuinfektionen von 67 % (ca. 55,6 Mio.) um 12,6 Mio. auf 82 % (68,2 Mio.).

Zwar liegt die Herdenimmunität bei einem R-Wert von 4 nur bei 75 % (62,5 Mio.), dennoch steigt die Gesamtanzahl der Infizierten weit über diese Summe hinaus, weil beim Erreichen der Immunitätsgrenze in der 30. Woche noch Hundertausende Neuinfektionen vorliegen, die über weitere 20 Wochen die Anzahl der Infizierten noch zusätzlich um fast 6 Mio. steigen lassen. In Abb. 3 sind die Zusammenhänge detailliert dargestellt.

Verlauf der Neuinfektionen und der Gesamtanzahl der Immunisierten (Genesene bzw. Geimpfte) ausgehend von einem Immunisierungsgrad von 67 % (entsprechend knapp 56 Mio. Immunisierten).

Abbildung 3: Verlauf der Neuinfektionen und der Gesamtanzahl der Immunisierten (Genesene bzw. Geimpfte) ausgehend von einem Immunisierungsgrad von 67 % (entsprechend knapp 56 Mio. Immunisierten). Grundlage für die Modellrechnung sind 1000 Neuinfektionen in der ersten Woche des Betrachtungszeitraums bei einem von 3 auf 4 erhöhten Reproduktionsfaktor. Der Anteil der Genesenen überschreitet in der 30. Woche die Grenze der aus dem R-Wert von 4 resultierenden theoretischen Herdenimmunität von 75 %. Ab diesem Zeitpunkt geht die Anzahl der Neuinfektionen exponentiell zurück. Die Infektionszahlen steigen aber weiter an und erreichen über 68 Mio. Menschen, das sind etwa 12,6 Mio. mehr als zu Beginn des Ausbruchs.

Abschätzung zur Anzahl der Neuinfektionen bei einer Erhöhung des R-Wertes

Wir haben gesehen, dass es bei einer Erhöhung des R-Werts einen Überschwingeffekt gibt. Die Gesamtanzahl der der Immunisierten (Genesene bzw. Geimpfte) klettert bei einem erneuten Ausbruch mit größerem R-Wert aus dem stabilen Zustand mit dem Immunisierungsgrad \(p_{i}\) nicht nur auf den entsprechenden höheren Wert der Herdenimmunität, sondern geht weit darüber hinaus. Die Anzahl der Neuinfizierten \(Infektionen_{neu}\) bei ungebremster Infektion mit dem erhöhten R-Wert kann man näherungsweise zu

\begin{equation} Infektionen_{neu} \approx 2N \cdot \left(1 – \frac{1}{R}-p_{i}\right) \end{equation}

bestimmen. Im vorangegangenen Beispiel (s. Abb. 3) kommt man so auf die Abschätzung \(Infektionen_{neu} \approx 2\cdot 83000000 \cdot \left(1–\frac{1}{4}–0.67\right) = 13.28 \cdot 10^{6}\).

Bestimmung des effektiven R-Wertes

Ausgehend von einer stabilen Situation mit einem Immunisierungsgrad in Höhe der Herdenimmunität verlaufen die Infektionszahlen bei einer Erhöhung des R-Wertes dem Augenschein nach in etwa so, wie man es in einer Population ohne Immunisierte erwarten würde. Das kann man Abb. 3 unmittelbar entnehmen. Bei genauer Betrachtung erkennt man indes, dass die Geschwindigkeit der Ausbreitung deutlich reduziert ist. Im Ergebnis beobachten wir unmittelbar nach dem Ausbruch ein Wachstum bei der Anzahl der Neuinfektionen mit einem effektiven Reproduktionsfaktor von

\begin{equation}R_{eff} = R \cdot \left(1 -p_{i}\right) \end{equation}

Wenn wir die Fälle mit \(p_{i} = 1 -\frac{1}{R}\) betrachten (also \(p_{i} = Herdenimmunität\)), ergibt sich dabei stets ein effektiver R-Wert \(\gt 1\), also exponentielles Wachstum. Daher müssen wir immer mit einer exponentiellen Ausbreitung von Neuinfektionen rechnen, sofern der aktuelle Immunisierungsgrad kleiner als die aus dem vorliegenden R-Wert resultierende theoretische Herdenimmunität ist.

In der Situation von Abb. 3 haben wir initial stabile Verhältnisse, da der erreichte Immunisierungsgrad von 67 % dem unterstellten R-Wert von etwa 3 entspricht. Aufgrund der Erhöhung des R-Werts auf 4 führt die induzierte Infektion von 1000 Personen zu einem exponentiellen Anstieg der Neuinfektionen. Der anfängliche effektive Reproduktionsfaktor (R-Wert) beläuft sich hierbei nach obiger Formel auf \(R_{eff} = 4 \cdot \left(1-0.67\right) = 1.32\).

Analyse des Infektionsgeschehens in Abhängigkeit vom Immunisierungsgrad

Nun haben wir oben ein Extrembeispiel betrachtet. In der Realität wird man einen solchen Ausbruch nicht dauerhaft geschehen lassen und Gegenmaßnahmen zur Eindämmung der Ausbreitung ergreifen (Kontaktreduzierung, Impfung). Die Anzahl der Neuinfizierten ist abhängig vom R-Wert, dem jeweils erreichten Immunisierungsgrad (Anteil der Immunisierten in der Population, entweder durch Impfung oder durch Genesung), von der initialen Inzidenz beim erneuten Ausbruch und von der Dauer der Ausbreitung mit dem erhöhten R-Wert.

Zunächst betrachten wir die Abhängigkeit des Infektionsgeschehens vom Immunisierungsgrad (s. Abb. 4).

Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Blau: Anteil der Immunisierten (Immunisierungsgrad); Rot: Anteil der Neuinfizierten nach einem Ausbruch mit einer initialen 7-Tage-Inzidenz von 50 im Verlauf von 12 Wochen; Grün: Verbleibender Anteil der Nicht-Infizierten.

Abbildung 4: Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Blau: Anteil der Immunisierten (Immunisierungsgrad); Rot: Anteil der Neuinfizierten nach einem Ausbruch mit einer initialen 7-Tage-Inzidenz von 50 im Verlauf von 12 Wochen; Grün: Verbleibender Anteil der Nicht-Infizierten. Beispiel: Balken bei x = 0,55: Immunisierungsgrad = 55 % (blaue Säule); Anteil der sich neu Infizierenden im Verlauf der nächsten 12 Wochen = 5 % (rote Säule bei x = 0,55); Anteil der nicht Infizierten im Verlauf der nächsten 12 Wochen = 40 % (grüne Säule bei x = 0,55);

Man entnimmt der Darstellung unmittelbar, dass der Anteil der Neuinfizierten (rote Säulen) bei höheren Immunisierungsgraden sehr schnell geringer wird. Im Beispiel von Abb. 4 ist die rote Säule für Immunisierungsgrade über 70 % im Diagramm nicht mehr erkennbar. Diese 70 % entsprechen in diesem Fall (R = 3) in etwa der theoretischen Herdenimmunität von 67 %.

Der Einfluss des Reproduktionsfaktors

Wie ändert sich nun die Situation bei Variation des R-Werts? Dazu betrachten wir die nachfolgende Abb. 5. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen und der Nicht-Infizierten in Abhängigkeit vom Immunisierungsgrad. Exemplarisch wurde eine anfängliche Inzidenz vom 50 Infektionen pro 100.000 Personen zugrunde gelegt und ein Zeitraum von 12 Wochen betrachtet. Man sieht, wie stark der R-Wert in das Verhältnis der Anteile von Immunisierten, Neuinfizierten und Nicht-Infizierten eingeht.

Beispiele: R-Wert = 2,5 (orangefarbene Kurve): Immunisierungsgrad = 0,3 (30 %), Neuinfizierte = 40 % (= 70 % – 30 %), Nicht-Infizierte = 30 % (= 100 % – 70 %); R-Wert = 3 (braune Kurve): Immunisierungsgrad = 0,3 (30 %), Neuinfizierte = 62 % (= 92 % – 30 %), Nicht-Infizierte = 8 % (= 100 % – 92 %); R-Wert = 5 (hellrote Kurve): Immunisierungsgrad = 0,7 (70 %), Neuinfizierte = 10 % (= 80 % – 70 %), Nicht-Infizierte = 20% (= 100 % – 80 %). Der oben bestimmte Wert für die Herdenimmunität ist näherungsweise der Immunisierungsgrad, bei welchem die entsprechende Kurve der Diagonale (grün) nahekommt und sie scheinbar berührt.

Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen und der Nicht-Infizierten in Abhängigkeit vom Immunisierungsgrad.

Abbildung 5: Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen und der Nicht-Infizierten in Abhängigkeit vom Immunisierungsgrad. Näherungsweise ist die Herdenimmunität der Immunisierungsgrad, bei welchem die entsprechende Kurve der Diagonale (grün) nahekommt und sie scheinbar berührt. Beispiel: R-Wert = 5 (hellrote Kurve): Immunisierungsgrad = 0,7 (70 %), Neuinfizierte = 10 % (= 80 % – 70 %), Nicht-Infizierte = 20 % (= 100 % – 80 %).

Im vorstehenden Diagramm sind die 3 relevanten Informationen: Immunisierungsgrad, Anteile der Neuinfektionen und Anteil der Nicht-Infizierten in ihrer relativen Größe zueinander dargestellt. Interessiert sind wir indes vor allem am Anteil der resultierenden Neuinfektionen nach einem Ausbruch bei gegebenem Immunisierungsgrad. Diese Info findet sich für dieselbe Parameterkonfiguration unmittelbar in Abb. 6.

Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen.

Abbildung 6: Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen in Abhängigkeit vom Immunisierungsgrad. Beispiel: R-Wert = 5 (hellrote Kurve): Immunisierungsgrad = 0,7 (70 %), Neuinfizierte = 10 % der Gesamtbevölkerung.

Infektionsgeschehen bei Immunisierungsgraden in der Nähe der Herdenimmunität

Grundsätzlich erkennt man anhand der Kurvenverläufe in Abb. 6, dass die relativen Neuinfektionszahlen mit wachsendem Immunisierungsgrade sehr schnell kleiner werden. Allerdings verflachen sich die Kurven bei höheren Immunisierungsgraden in der Nähe der theoretischen Herdenimmunität (z.B. 80 % bei R = 5, hellrote Kurve). Um die Verläufe in diesem Bereich sichtbar zu machen, sind die relativen Anteile der Neuinfektionszahlen im Folgenden in logarithmischer Skalierung aufgetragen. Die Reduzierung der Anzahl der Neuinfektionen durch Erhöhung des Immunisierungsgrades ist nun direkt ablesbar.

Beispiel: Bei einem R-Wert von 1,5 und einem Immunisierungsgrad von 0,55 (55 %) entnehmen wir der Grafik einen Wert von 0,1% Neuinfektionen binnen 12 Wochen nach einem Ausbruch mit der anfänglichen Inzidenz von 50 pro 100. 000 Einwohner (s. Abb. 7). Dagegen sind es bei einem R-Wert von 3 im selben Zeitraum bereits 6 % Neuinfektionen bezogen auf die Gesamtbevölkerung.

Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad in logarithmischer Skalierung. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen.

Abbildung 7: Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad in logarithmischer Skalierung. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen in Abhängigkeit vom Immunisierungsgrad. Beispiel: R-Wert = 5 (hellrote Kurve): Immunisierungsgrad = 0,7 (70 %), Neuinfizierte = 10 % der Gesamtbevölkerung.

Sensitivitätsanalyse

Bei höheren Inzidenzen verschieben sich die Kurven nach rechts, so dass die die Anzahl der Neuinfektionen nach einem neuerlichen Ausbruch steigt. Bei der gegenüber dem Beispiel oben verdoppelten Inzidenz von 100 pro 100. 000 Einwohnern sind es nun für den R-Wert 1,5 und einem Immunisierungsgrad von 0,55 (55 %) 0,2 % Neuinfektionen binnen 12 Wochen, und bei einem R-Wert von 3 im selben Zeitraum bereits 10 % Neuinfektionen bezogen auf die Gesamtbevölkerung (s. Abb. 8).

Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad in logarithmischer Skalierung. Bezugsgrößen: initiale 7-Tage-Inzidenz = 100, Zeitraum = 12 Wochen.

Abbildung 8: Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad in logarithmischer Skalierung. Bezugsgrößen: initiale 7-Tage-Inzidenz = 100, Zeitraum = 12 Wochen. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen in Abhängigkeit vom Immunisierungsgrad. Beispiel: R-Wert = 5 (hellrote Kurve): Immunisierungsgrad = 0,7 (70 %), Neuinfizierte = 16 % der Gesamtbevölkerung; Immunisierungsgrad = 0,8 (80 %), Neuinfizierte = 1 % der Gesamtbevölkerung.

Der einem Neuinfektionsanteil von 1 % entsprechende Immunisierungsgrad stimmt bei einer angenommenen Inzidenz von 100 und einem Betrachtungszeitraum von 12 Wochen in guter Näherung mit dem Wert der theoretischen Herdenimmunität überein (vgl. Abb. 1 und Abb. 8). D. h., sofern der Immunisierungsgrad der Population in etwa dem Wert für die Herdenimmunität entspricht, infizieren sich bei einem Ausbruch mit der Inzidenz 100 binnen 12 Wochen ca. 1 % der Bevölkerung.

Erweitern wir nun die summarische Sensitivitätsanalyse in Richtung der Verlängerung des Betrachtungszeitraums. In erster Näherung nimmt man ähnliche Veränderungen wahr, wie bei einer entsprechenden Vergrößerung der Inzidenz. In Abb. A-1 (s. Anhang) ist die Kurvenschar auf Basis einer initialen 7-Tage-Inzidenz von 50 und einer Dauer von 24 Wochen dargestellt. Im Vergleich zur Situation bei der halben Dauer von 12 Wochen, sind die Infektionszahlen bei niedrigen Immunisierungsgraden deutlich erhöht. Dagegen steigen bei die Infektionszahlen bei hohen Immunisierungsgraden merklich geringer.

Beispiel: R-Wert = 2 (rote Kurve): Immunisierungsgrad = 0,4 (40 %), Neuinfizierte = 2 % der Gesamtbevölkerung bei einer Dauer von 12 Wochen (s. Abb. 7), aber Neuinfizierte = 10 % bei einer Dauer von 24 Wochen. R-Wert = 2,5 (orange Kurve): Immunisierungsgrad = 0,6 (60 %), Neuinfizierte = 0,6 % der Gesamtbevölkerung bei einer Dauer von 12 Wochen (s. Abb. 7), aber Neuinfizierte = 1 % bei einer Dauer von 24 Wochen.

Absolute Infektionszahlen in Abhängigkeit vom Immunisierungsgrad

Im Folgenden bestimmen wir die Höhe der absoluten Infektionszahlen bei gegebenen Immunisierungsgraden und den initialen 7-Tage-Inzidenzen von 50 und 100 sowie den Betrachtungszeiträumen 12 und 24 Wochen.

„Normales“ Leben führt zu R-Werten zwischen 2 und 3 für Personen mit eher geringer Kontakthäufigkeit und R-Werten zwischen 3 und 4 für Personen mit höherer Kontakthäufigkeit und -intensität. Betreffend Massenveranstaltungen muss man teilweise mit Reproduktionsfaktoren deutlich darüber rechnen (bis zu 5, evtl. auch mehr).  

Wir beschränken uns daher auf Reproduktionsfaktoren R = 2 bis 5 und Immunisierungsgrade 50 % bis 80 %. Bei niedrigeren Immunisierungsgraden gehen die Neuinfektionszahlen unter den gegebenen Randbedingungen schnell in die Millionen. Umgekehrt erscheinen Immunisierungsgrade über 80 % in absehbarer Zeit kaum erreichbar.

Die Ergebnisse sind in den Abbildungen 9 und 10 zusammengetragen. Die weitere Sensitivitätsanalyse findet sich im Anhang (s. Abb. A-2 und A-3 sowie Abb. A-4 und A-5).

Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 2, 2,5 und 3. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen.

Abbildung 9: Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 2, 2,5 und 3. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen. Die Säulen zeigen jeweils die Anzahl der Neuinfektionen für die entsprechenden Wertekombinationen von Immunisierungsgrad und R-Wert. Beispiel: R-Wert = 2,5 (blaue Säulen), Immunisierungsgrad = 60 %, Neuinfizierte = 480.000 innerhalb von 12 Wochen.

Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 3,5, 4 und 5. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen.

Abbildung 10: Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 3,5, 4 und 5. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen. Die Säulen zeigen jeweils die Anzahl der Neuinfektionen für die entsprechenden Wertekombinationen von Immunisierungsgrad und R-Wert. Beispiel: R-Wert = 3,5 (grüne Säulen), Immunisierungsgrad = 60 %, Neuinfizierte = 6 Mio. innerhalb von 12 Wochen.

Die vorstehenden Abbildungen zeigen, dass es nicht ausreicht, einfach nur einen Immunisierungsgrad in Höhe der formalen Herdenimmunität anzustreben. Auch dann, wenn z.B. 70 % der Menschen immun sind, führt ein neuerlicher Ausbruch mit einem R-Wert von 3,5, aus einer anfänglichen 7-Tage-Inzidenz von 50 Infektionen pro 100.000 Einwohnern (das wären bundesweit 41.500 Infizierte in 7 Tagen) bereits in 12 Wochen zu 650.000 Neuinfektionen, bei einem R-Wert von 4 gar zu 1,7 Millionen (s. Abb. 10).

Zusammenspiel von R-Wert und Immunisierungsgrad

Es stellt sich die Frage, welche Immunisierungsgrade für die Wiedererlangung unserer gewohnten wirtschaftlichen und gesellschaftlich-kulturellen Freiheiten tatsächlich erreicht werden müssen. Werfen wir dazu einen Blick auf Abb. 11. Diese Darstellung dient uns im Folgenden zur Orientierung. Für jedes Wertepaar von R-Wert (0 – 10) und Immunisierungsgrad finden wir hier die grundlegende Information zur Kritikalität der Wertekombination.

Bei den Wertepaaren innerhalb der rot eingefärbten Fläche breitet sich das Virus nach einer anfänglichen Infektion stets mit exponentieller Geschwindigkeit aus. Der grüne Bereich steht für die Kontrolle über das Infektionsgeschehen, da hier umgekehrt jede Infektion rasch verebbt (exponentielle Reduzierung der Neuinfektionszahlen). Dazwischen liegt ein gelber Bereich mit einem näherungsweise linearen Infektionsgeschehen, d.h., die Anzahl der Neuinfektion bleibt ungefähr konstant. Exakt linear ist das Verhalten auf der blauen Grenzkurve. Im gelben Bereich oberhalb und links davon sinken die Neuinfektionszahlen langsam. Unterhalb und rechts davon steigen sie langsam, aber immer mit der Gefahr des Abrutschens in den roten Bereich.

Pandemie-Orientierungskarte (1). Kritikalität der Wertekombination von R-Wert (0 – 10) und Immunisierungsgrad (0 – 100).

Abbildung 11: Pandemie-Orientierungskarte (1). Kritikalität der Wertekombination von R-Wert (0 – 10) und Immunisierungsgrad (0 – 100).

Realistische Zielsetzung

Nach Abb. 12 verbleibt als realistischer Zielbereich das grün-gelbe Ecksegment zwischen den beiden Verbotszonen und der blauen Grenzkurve. Dabei stellt sich aber die Frage, mit welchem Restrisiko wir rechnen müssen.

Pandemie-Orientierungskarte (2). Kritikalität der Wertekombination von R-Wert (0 – 10) und Immunisierungsgrad (0 – 100). Zusätzlich eingetragen sind die „verbotenen Zonen“

Abbildung 12: Pandemie-Orientierungskarte (2). Kritikalität der Wertekombination von R-Wert (0 – 10) und Immunisierungsgrad (0 – 100). Zusätzlich eingetragen sind die „verbotenen Zonen“: Immunisierungsgrade, die sehr hohe Impfquoten erfordern (blaue Zone im oberen Bereich) sowie R-Werte unter 1,5, die zwar im Lockdown realisierbar sind, aber mit gravierenden gesellschaftlichen und wirtschaftlichen Kollateralschäden einhergehen und ein „normales“ Leben nicht erlauben (blaue Zone im linken Bereich).

Restrisiko

Für einige exemplarische Wertekombinationen von Immunisierungsgrad und R-Wert sind in Abb. 13 die resultierenden Neuinfektionszahlen auf Basis einer initialen 7-Tage-Inzidenz von 50 Neuinfektionen pro 100.000 Einwohner und einer Ausbreitung über 12 Wochen in die Orientierungskarte eingetragen. Man sieht, dass Kombinationen rechts der blauen Grenzkurve zu Neuinfektionszahlen in 7-stelliger Höhe führen. Im grünen Bereich links davon bleibt man im beherrschbaren 5 bis 6-stelligen Bereich. Auf der Grenzkurve selbst ergeben sich binnen 12 Wochen bereits ca. eine halbe Million Neuinfektionen.

Pandemie-Orientierungskarte (3). Kritikalität der Wertekombination von R-Wert (0 – 10) und Immunisierungsgrad (0 – 100). Bezugsgrößen für die Zahlenangaben: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen.

Abbildung 13: Pandemie-Orientierungskarte (3). Kritikalität der Wertekombination von R-Wert (0 – 10) und Immunisierungsgrad (0 – 100). Bezugsgrößen für die Zahlenangaben: initiale 7-Tage-Inzidenz = 50, Zeitraum = 12 Wochen. Rechts der blauen Grenzkurve (exponentielles Wachstum) ergeben sich Neuinfektionszahlen in Millionenhöhe. Links davon bleiben die Neuinfektionszahlen im Bereich von einigen Zehntausend bis einigen Hunderttausend.

Die Zahlenwerte folgen aus den Säulendiagrammen in Abb. 9 und 10. Bei Betrachtung niedriger oder höherer Inzidenzen bzw. von kürzeren oder längeren Ausbreitungszeiten ergeben sich andere Neuinfektionszahlen (s. Abb. A-2 bis A-5 im Anhang), teilweise geringere (niedrigere Inzidenz oder kürzere Ausbreitungsdauer), teilweise aber auch höhere (höhere Inzidenz oder längere Ausbreitungsdauer). Nach der obigen Sensitivitätsanalyse (Abb. 5 – 10 und Anhang) bleibt die Grundaussage indessen dieselbe.

Erhöhtes Risiko, sofern die Impfstoffe nicht zu 100 % wirken

Bei den obigen Rechnungen sind wir von einer 100-prozentigen Wirksamkeit der Impfstoffe ausgegangen und haben unterstellt, dass Geimpfte, 1. immun, und 2. nicht infektiös sind. In welchen Umfang und wie lange das für die einzelnen Impfstoffe und gegen eventuell kursierende Virusmutationen zutrifft, ist gegenwärtig noch weitgehend offen. Wenn z.B. die Immunität effektiv nur bei 90% der Geimpften vorliegt, dann hieße das, dass die Impfquote im Hinblick auf dieselbe Schutzwirkung in der Bevölkerung entsprechend höher sein muss. Um einen effektiven Immunisierungsgrad von 70 % zu erreichen, müssten daher in diesem Falle knapp 78 % der Menschen geimpft werden.

Umgekehrt wären bei einer Impfquote von 70 % effektiv nur 63 % immunisiert. Wie man Abb. 9 entnehmen kann, würde man dann in der Beispielrechnung bei einem R-Wert von 3 statt der 261.000 Infizierten (bezogen auf einen Immunisierungsgrad von 70 %) etwa 1 Mio. Infizierte (bezogen auf einen Immunisierungsgrad von 63 %) bekommen.

Die Sensitivität der Fallzahlen bei Variation des Immunisierungsgrads in Bezug auf den theoretischen Bezugswert der Herdenimmunität ist in Abbildung 14 dargestellt.

Sensitivität der Fallzahlen bei Variation des Immunisierungsgrads. Für unterschiedliche R-Werte ist dargestellt, um welchen Faktor (y-Achse) sich die Neuinfektionszahlen bei einer Änderung des Immunisierungsgrads (x-Achse) im Intervall Herdenimmunität – 20 % bis Herdenimmunität + 20 % verändern.

Abbildung 14: Sensitivität der Fallzahlen bei Variation des Immunisierungsgrads. Für unterschiedliche R-Werte ist dargestellt, um welchen Faktor (y-Achse) sich die Neuinfektionszahlen bei einer Änderung des Immunisierungsgrads (x-Achse) im Intervall Herdenimmunität – 20 % bis Herdenimmunität + 20 % verändern. Man beachte die logarithmische Skalierung auf der y-Achse. Bezugswert ist die jeweilige Neuinfektionszahl, die sich bei Übereinstimmung zwischen dem Immunisierungsgrad und der Herdenimmunität ergibt. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 6 Wochen. Beispiel: R-Wert = 4 (blaue Kurve), Immunisierungsgrad = Herdenimmunität – 10 %; dem Diagramm entnimmt man, dass die Anzahl der Neuinfektionen fast 4-mal höher ist als im Falle „Immunisierungsgrad = Herdenimmunität“.

Dem Diagramm kann man unschwer entnehmen, wie sensibel die Fallzahlen auf Abweichungen des effektiven Immunisierungsgrads von der theoretischen Herdenimmunität reagieren. Der Referenzwert im Nullpunkt (also Abweichung = x-Wert = 0 %) ist in Bezug auf den jeweiligen R-Wert auf 1 gesetzt. Die initiale Kurvensteigung im Nullpunkt ist proportional zum R-Wert (genauer: -R).

In der linken Hälfte des Diagramms sieht man, wie stark die Fallzahlen steigen, wenn der Immunisierungsgrad die theoretische Herdenimmunität pro R-Wert um einige Prozentpunkte unterschreitet. Auf der rechten Seite des Diagramms erkennt man umgekehrt, dass die Fallzahlen sehr schnell kleiner werden, sofern der (effektive) Immunisierungsgrad den Wert für die Herdenimmunität nennenswert übersteigt.

Die Kurven in Abb. 14 belegen klar die Kritikalität des Immunisierungsgrads in Bezug auf die aus dem R-Wert bestimmte theoretische Herdenimmunität. Ein effektiver Immunisierungsgrad unterhalb der Herdenimmunität bringt noch keine durchgreifende Entlastung bei den Neuinfektionszahlen. Im Hinblick auf die möglicherweise (bzw. wahrscheinlich) nicht 100%-ige Wirksamkeit von Impfungen muss daher die Impfquote signifikant über der jeweiligen Herdenimmunitätsgrenze liegen.

Folgerungen

Als Resümee aus dem Vorhergehenden ergibt sich die folgende Darstellung (s. Abb. 15): Die Immunisierungsgrade müssen Werte in der oberen Hälfte des eingezeichneten grünen Bereichs annehmen. Je weiter entfernt von der blauen Grenzkurve, desto besser. Bei Immunisierungsgraden unter 70 % sind R-Werte über 3 tabu, da die Infektionszahlen ansonsten binnen weniger Wochen 6-stellig werden können (s. Abb. 13). Umgekehrt erfordern R-Werte um 4 Immunisierungsgrade von 80%.

Pandemie-Orientierungskarte (4). Ausgangssituation, gegenwärtiger Status und Zielbereich.

Abbildung 15: Pandemie-Orientierungskarte (4). Ausgangssituation, gegenwärtiger Status und Zielbereich.

In Abbildung 16 sind für die Reproduktionsfaktoren R = 2,5, 3, 4 und 5 jeweils die Werte für die theoretischen Herdenimmunitäten eingetragen. Die grünen Pfeile darüber zeigen die sinnvollen Wertebereiche der dazu passenden Immunisierungsgrade. Nach den vorstehenden Analysen erscheint es zweckmäßig, den Immunisierungsgrad mindestens etwa 5 % über der sich aus dem R-Wert ergebenden theoretischen Herdenimmunität zu wählen. Der entsprechende Bereich ist unten durch die punktierte grüne Line begrenzt. Dies unterstellt, bleiben die Neuinfektionsraten bei der angenommenen initialen Inzidenz von 50 pro 100.000 über einen Zeitraum von 12 Wochen im niedrigen 6-stelligen Bereich (s. Abb. 13), sofern nahezu 100 % der Geimpften tatsächlich immun sind und das Virus nicht weitergeben. Schon wenn die Impfung nur in 1 von 10 Fällen nicht wie erwartet zur Immunisierung führt, was ja immer noch eine hohe Impfwirksamkeit von 90 % wäre, könnten die Neuinfektionen im Betrachtungszeitraum von 12 Wochen die Millionengrenze erreichen und überschreiten.

Nur drei Beispiele dazu: R-Wert = 2,5, Impfquote 60 %, effektive Immunisierung 55 %. Statt der bei einer Immunisierung von 60 % erwarteten Anzahl von 480.000 Neuinfektionen (initiale Inzidenz 50 pro 100.000, 12 Wochen) muss man mit mehr als doppelt so viel rechnen (= 1,09 Mio., vgl. Abb. 9). R-Wert = 3,5, Impfquote 70 %, effektive Immunisierung 65 %. Die bei einer Immunisierung von 70 % erwarteten 650.000 Neuinfektionen (initiale Inzidenz 50 pro 100.000, 12 Wochen) steigen auf die dreifache Anzahl (= 2,05 Mio., vgl. Abb. 10). R-Wert = 4, Impfquote 80 %, effektive Immunisierung 70 %. Gegenüber den bei einer Immunisierung von 80 % zu erwartenden 151.000 Neuinfektionen (initiale Inzidenz 50 pro 100.000, 12 Wochen) könnte sich die Anzahl auf 1,71 Mio. erhöhen (vgl. Abb. 10).

Pandemie-Orientierungskarte (5). Ausgangssituation, gegenwärtiger Status und Zielbereich mit den eingezeichneten minimalen Immunisierungsgraden (punktierte Linie / Startpunkte der grünen Pfeile) bezogen auf die Reproduktionsfaktoren R = 2,5, 3, 3,5 und 4 sowie den entsprechenden Herdenimmunitäten H.

Abbildung 16: Pandemie-Orientierungskarte (5). Ausgangssituation, gegenwärtiger Status und Zielbereich mit den eingezeichneten minimalen Immunisierungsgraden (punktierte Linie / Startpunkte der grünen Pfeile) bezogen auf die Reproduktionsfaktoren R = 2,5, 3, 3,5 und 4 sowie den entsprechenden Herdenimmunitäten H.

Resümee

Nach dem Vorstehenden kann man sich der Erkenntnis nicht verweigern, dass auch bei einer vergleichsweise hohen Impfquote von über 70 % die Pandemie nicht als beendet angesehen werden kann. Unter „normalen“ Bedingungen können die Neuinfektionszahlen selbst bei einem moderaten Ausbruch mit einer 7-Tage-Inzidenz von 50 pro 100.000 Personen in wenigen Wochen Werte von einigen hunderttausend erreichen. Zum Vergleich: In der ersten Corona-Welle waren von Anfang März bis Ende Mai 2020 trotz der Lockdown-Beschränkungen etwa 180.000 Corona-Infektionen zu verzeichnen, und das hat man damals als extrem bedrohlich empfunden. Großveranstaltungen (Sportereignisse, Volksfeste, Karneval, Weihnachtsmärkte) können unter den vor der Pandemie üblichen Bedingungen eine solche Inzidenz fraglos auslösen. Gleichfalls können auch Urlaubsrückkehrer die Quelle für Neuinfektionen sein.

Welchen Schluss kann man daraus ziehen? Impfen bringt nichts? – Keineswegs! Natürlich ist eine hohe Impfquote wichtig, vor allem gilt dies für die vulnerablen Gruppen (insbes. Menschen über 70 oder 80 und Menschen mit Vorerkrankungen). Impfen allein genügt aber nicht. Wir müssen vielmehr lernen, mit dem Corona-Virus zu leben, genau wie wir auch gelernt haben, mit anderen viralen Bedrohungen zurechtzukommen. Diese Aufforderung richtet sich an uns alle, sie geht aber zuvorderst an die politisch Verantwortlichen.

Die Politiker müssen sich der Realität stellen und zu einem wissenschaftlich fundierten, aber eben nicht einseitig am Gesundheitssystem ausgerichteten Krisenmanagement finden. Dazu gehört vor allem die Abkehr von der Inzidenzzahl als dem nahezu einzigen Indikator für die Situationsbeurteilung. Diese Steuergröße ist für die Auslösung von Schutzmaßnahmen denkbar ungeeignet. Ausgehend von der Erwartung, dass die Impfquote in absehbarer Zeit kaum über 70 % steigen wird, legt die vorstehende Analyse nahe, dass die Pandemie noch lange dauern könnte, wenn man ausschließlich auf Inzidenzen schaut.

Es ist nicht die Aufgabe der Politik, jedes Risiko von den Menschen zu nehmen. Und es ist absolut unverhältnismäßig, dem Vorsorgeprinzip alles andere unterzuordnen: Kultur, gesellschaftliche Aktivitäten, Freizeit, ja die gesamt Wirtschaft. Niemand führt Buch über die dergestalt verursachten Kollateralschäden. Freiheitsbeschränkungen sind in der Demokratie höchstens ausnahmsweise und befristet hinnehmbar. Wer das als Politiker anders sieht, sollte sein Amt niederlegen bzw. sich gar nicht erst zur Wahl stellen.

Mündige Staatsbürger brauchen keinen Vormund. Die Eigenverantwortung ist die stärkste Waffe gegen das Corona-Virus. Freiheit und Eigenverantwortung sind die zwei Seiten ein und derselben Medaille. Der Staat trägt Verantwortung nur für diejenigen, die sich nicht selbst schützen können. Darauf muss er sich konzentrieren und soll alles andere der Vernunft, dem Ideenreichtum und dem Gestaltungswillen seiner Staatsbürger überlassen.


Quellen:

[1] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 23.03.2021 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Mar_2021/2021-03-23-de.pdf?__blob=publicationFile

[2] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 26.01.2021 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Jan_2021/2021-01-26-de.pdf?__blob=publicationFile

[3] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 23. März 2021). Statista

https://de.statista.com/statistik/daten/studie/1103904/umfrage/corona-infektionen-covid-19-in-deutschland-nach-altersgruppe/#professional

[4] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 23. März 2021). Statista

https://de.statista.com/statistik/daten/studie/1104173/umfrage/todesfaelle-aufgrund-des-coronavirus-in-deutschland-nach-geschlecht/

[5] Nach Krisengipfel: Virologe mit scharfer Corona-Kritik an Merkel und Söder – „Weit weg von Realität“

https://www.merkur.de/lokales/muenchen/lockdown-corona-bayern-virologe-corona-strategie-merkel-soeder-krise-gipfel-zr-90175293.html

[6] Corona-Lockdown bis Sommer? Just der Wirtschaftsminister schließt nichts aus

https://www.merkur.de/politik/coronavirus-lockdown-verlaengerung-peter-altmaier-deutschland-mutation-cdu-variante-sommer-90186104.html

[7] Scharfe Kritik an Corona-Politik und Experten – „Andere Sichtweisen offenbar unerwünscht“

https://www.merkur.de/politik/corona-deutschland-gipfel-merkel-laender-massnahmen-pandemie-kritik-experten-wissenschaftler-auswahl-90174423.html

[8] Das „Vorsorgeprinzip“ der Kanzlerin in der Pandemie ist einseitig

https://www.handelsblatt.com/meinung/kommentare/kommentar-das-vorsorgeprinzip-der-kanzlerin-in-der-pandemie-ist-einseitig-/26833548.html

[9] Angela Merkel: Unerwarteter Corona-Angriff! Leopoldina attestiert „politischen Missbrauch von Wissenschaft“ | Politik (merkur.de)

https://www.merkur.de/politik/coronavirus-merkel-soeder-wissenschaft-leopoldina-experte-lockdown-missbrauch-politik-90204364.html

[10] NACH DER AUSNAHME KOMMT DIE NORMALITÄT

[11] Das Coronavirus – So schnell breitet es sich aus. Aber wir können etwas tun!

[12] Das Coronavirus: Harmlos? Bedrohlich? Tödlich?

[13] Aktuelles zu Corona

[14] Die Corona-Pandemie: Alter ist der dominierende Risikofaktor

[15] CORONA-KRITIKER AUS DEM ETHIKRAT ENTLASSEN


Anhang:

Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 24 Wochen.

Abbildung A-1: Infektionsgeschehen in Abhängigkeit vom Immunisierungsgrad. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 24 Wochen. Die Kurvenverläufe zeigen für verschiedene R-Werte die Anteile der Neuinfektionen in Abhängigkeit vom Immunisierungsgrad. Beispiel: R-Wert = 5 (hellrote Kurve): Immunisierungsgrad = 0,7 (70 %), Neuinfizierte = 18 % der Gesamtbevölkerung; Immunisierungsgrad = 0,8 (80 %), Neuinfizierte = 1 % der Gesamtbevölkerung.

Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 2, 2,5 und 3. Bezugsgrößen: initiale 7-Tage-Inzidenz = 100, Zeitraum = 12 Wochen.

Abbildung A-2: Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 2, 2,5 und 3. Bezugsgrößen: initiale 7-Tage-Inzidenz = 100, Zeitraum = 12 Wochen. Die Säulen zeigen jeweils die Anzahl der Neuinfektionen für die entsprechenden Wertekombinationen von Immunisierungsgrad und R-Wert. Beispiel: R-Wert = 2,5 (blaue Säulen), Immunisierungsgrad = 60 %, Neuinfizierte = 925.000 innerhalb von 12 Wochen.

Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 3,5, 4 und 5. Bezugsgrößen: initiale 7-Tage-Inzidenz = 100, Zeitraum = 12 Wochen.

Abbildung A-3: Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 3,5, 4 und 5. Bezugsgrößen: initiale 7-Tage-Inzidenz = 100, Zeitraum = 12 Wochen. Die Säulen zeigen jeweils die Anzahl der Neuinfektionen für die entsprechenden Wertekombinationen von Immunisierungsgrad und R-Wert. Beispiel: R-Wert = 3,5 (grüne Säulen), Immunisierungsgrad = 60 %, Neuinfizierte = 9,5 Mio. innerhalb von 12 Wochen.

Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 2, 2,5 und 3. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 24 Wochen.

Abbildung A-4: Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 2, 2,5 und 3. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 24 Wochen. Die Säulen zeigen jeweils die Anzahl der Neuinfektionen für die entsprechenden Wertekombinationen von Immunisierungsgrad und R-Wert. Beispiel: R-Wert = 2,5 (blaue Säulen), Immunisierungsgrad = 60 %, Neuinfizierte = 878.000 innerhalb von 24 Wochen.

Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 3,5, 4 und 5. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 24 Wochen.

Abbildung A-5: Neuinfizierte in Abhängigkeit vom Immunisierungsgrad für R-Werte 3,5, 4 und 5. Bezugsgrößen: initiale 7-Tage-Inzidenz = 50, Zeitraum = 24 Wochen. Die Säulen zeigen jeweils die Anzahl der Neuinfektionen für die entsprechenden Wertekombinationen von Immunisierungsgrad und R-Wert. Beispiel: R-Wert = 3,5 (grüne Säulen), Immunisierungsgrad = 60 %, Neuinfizierte = 17,6 Mio. innerhalb von 24 Wochen.

Wie verlässlich sind Corona-Tests?

Der Fall des vor einigen Monaten fälschlicherweise positiv auf Corona getesteten Serge Gnabry vom FC Bayern hat auch einer breiteren Öffentlichkeit deutlich gemacht, dass die (PCR-) Corona-Tests mitnichten so zuverlässig sind, wie das vielfach angenommen und auch von Politikern und Medizinern gerne verbreitet wird. Selbst bei einer formal zunächst hochverlässlich klingenden Testsensitivität und -spezifität von 98% oder 99% sind die resultierenden Testergebnisse alles andere als sicher. Das hat vor allem mathematische Gründe.

Die resultierende Ungenauigkeit ist keine spezifische Schwäche des PCR-Tests an sich, wobei hier in der Anwendung durchaus noch einige zusätzliche Fallstricke warten, die die Testungenauigkeit noch weiter steigern können. Durch die Aussagen von Medizinern und Sprechern von Laboren, die Tests hätten nur eine Fehlerrate von 1%, wird ein falscher Eindruck erweckt. Wie gesagt, das hat wenig mit Medizin oder gar Virologie zu tun. Die Problematik besteht grundsätzlich bei jedem Test gegebener Sensitivität und Spezifität, z.B. auch dann, wenn Schrauben auf Passgenauigkeit überprüft werden.

Nehmen wir ein Beispiel: Testsensitivität 99%, Testspezifität 99%. Das klingt nach fast absoluter Sicherheit. Der Laie meint, damit seien 99% aller positiven Testergebnisse verlässlich und nur 1% falsch. Dem ist leider nicht so. Tatsächlich könnten hier bis zu 50% aller Positiv-Fälle in Wahrheit negativ sein.

Bevor wir dies aufklären, sollen noch die beiden Fachbegriffe kurz erläutert werden.

Sensitivität und Spezifität

Testsensitivität 100% bedeutet Folgendes: Wenn eine Person Virusträger ist, dann zeigt dies der Test mit Sicherheit an. Jeder Infizierte wird demnach als solcher erkannt. Bei einer Testsensitivität von p wird das Virus durch den Test entsprechend mit der Wahrscheinlichkeit p gefunden.

Testspezifität 100% bedeutet Folgendes: Wenn eine Person kein Virusträger ist, dann wird dies vom Test mit Sicherheit erkannt. Jeder Nicht-Infizierte wird demnach eindeutig als gesund identifiziert. Bei einer Testspezifität von q wird die Abwesenheit des Virus vom Test entsprechend mit der Wahrscheinlichkeit q erkannt.

Ein simples Beispiel

Um zu verstehen, wie es trotz der hohen Verlässlichkeit des Testverfahrens zu dieser relativ großen Ungenauigkeit bezüglich der positiven Testergebnisse kommt, betrachten wir ein konkret nachvollziehbares Beispielszenario, in dem die betreffenden Wahrscheinlichkeiten unmittelbar auf der Hand liegen.

Nehmen wir einige Blätter kariertes Papier und schneiden davon 101 quadratische Zettel mit je 5 cm Seitenlänge heraus. Auf jedem der kleinen Papierbögen haben wir nun 10×10 = 100 kleine Quadrate á 5 mm Seitenlänge. Nun nehmen wir die Zettel und färben jeweils genau eines der kleinen Quadrate schwarz ein. Auf dem ersten Zettel das erste Quadrat oben links, auf dem zweiten Zettel das zweite Quadrat in der Reihe, usw., so dass am Ende auf jedem Zettel ein anderes Quadrat eingefärbt ist. Nachdem wir 100 Zettel derart bearbeitet haben, färben wir den letzten (101-ten) Zettel komplett schwarz. Nun überkleben wir die Zettel mit einer abziehbaren intransparenten Folie, die gleichfalls mit einem 5×5 mm Karomuster bedruckt ist.

Abbildung 1: Das Beispielszenario (s. Text)

Wenn wir nun einen der Zettel 1 – 100 zur Hand nehmen, zufällig eines der 100 darauf bedruckten kleinen Quadrate auswählen und es abziehen, befindet sich darunter entweder ein weißes oder ein schwarzes Quadrat. Nachdem jeder der Zettel genau ein schwarzes Quadrat trägt, ist die Wahrscheinlichkeit, auf ein solches Quadrat zu stoßen 1:100. In 99 von 100 Fällen ist das freigelegte Quadrat weiß. Beim 101-ten Zettel sind alle Quadrate schwarz, demzufolge finden wir dort mit 100%-iger Wahrscheinlichkeit ein schwarzes Quadrat.

Die Analogie zum Corona-Testszenario

Worin besteht nun der Querbezug zum Testszenario bei einem Corona-Test? Ganz einfach: Der eine durchgehend schwarz eingefärbte Zettel entspricht einem mit Corona infizierten Probanden. Ihn zu finden ist die Aufgabe des Tests. Der Test ist so konstruiert, dass wir diesen Zettel mit 100%-iger Sicherheit finden. Demzufolge haben wir hier eine Testsensitivität von 100%.

Die übrigen 100 weißen Zettel mit nur einem schwarz eingefärbten Quadrat stehen für die große Mehrheit der nicht infizierten Probanden. Wenn wir einen solchen Zettel nehmen und ein beliebiges Quadrat freilegen, sehen wir dort mit 99%-iger Wahrscheinlichkeit ein weißes Quadrat. In diesem Wert spiegelt sich die Testspezifität wider: Das ist die Wahrscheinlichkeit dafür, dass der entsprechende Zettel nicht gänzlich schwarz ist bzw., dass ein Proband nicht infiziert ist.

Nun stellen wir uns der Aufgabe, unter den 101 Zetteln den komplett schwarz eingefärbten zu finden. Dazu dürfen wir ein beliebiges quadratisches Feld aussuchen, die Zettel nacheinander zur Hand nehmen und das betreffende Feld freilegen. Was passiert?

Die Ungenauigkeit solcher Tests ist kein spezifisches Corona-Problem

Genau einer der 100 weißen Zettel hat an der freigelegten Stelle ein schwarzes Quadrat, die 99 anderen zeigen ein weißes Quadrat. Der eine schwarze Zettel (den wir aber nicht als solchen erkennen) zeigt natürlich ebenfalls ein schwarzes Quadrat. Wir haben also 2 Zettel mit schwarzen Quadraten und können nicht entscheiden, welches davon der gänzlich schwarze Zettel ist. Die Falsch-Positiv-Rate beträgt somit 50%. Genau die gleiche Situation haben wir bei einem Corona-Test mit einer 100%-igen Testsensitivität und einer 99%-igen Testspezifität unter der Annahme von 1% tatsächlich positiven Probanden.

Nun skalieren wir das beschriebene Szenario auf die Situation mit einer Million weißen und schwarzen Zetteln. Dazu multiplizieren wir einfach mit dem Faktor 10.000. Wir finden sodann 20.000 Zettel mit einem schwarzen Quadrat. Da tatsächlich nur 10.000 Zettel wirklich schwarz sind, haben wir somit weitere 10.000 die fälschlicherweise als schwarz angesehen werden.

Übertragen auf das Testszenario beim Corona-Test mit 100%-iger Testsensitivität und 99%-iger Testspezifität entspricht dies 20.000 positiv Getesteten bei nur 10.000 tatsächlichen Virenträgern und damit einer Falsch-Positiv-Rate von 50%. Die realen Verhältnisse dürften nicht allzu weit davon entfernt liegen.

Konkrete Zahlenwerte

Wenn wir davon ausgehen, dass 2% der Bevölkerung Träger des Coronavirus sind, dann liegt ein solcher Test (mit Testsensitivität = 99% und Testspezifität = 99%) im Hinblick auf die Gesamtbevölkerung in 33% aller Positivfälle falsch. D.h., jeder dritte positiv Getestete ist in Wahrheit nicht infiziert. Und wenn die Testspezifität „nur“ 98% beträgt, was ja immer noch sehr vertrauenswürdig klingt, dann ist sogar nur jeder zweite Positivfall tatsächlich ein Virusträger.

Der Fall Gnabry ist also keineswegs die große Ausnahme. Er zeigt auch, ein singulärer Positivtest ist allenfalls ein Indikator für eine mögliche Infektion und ruft förmlich nach einem Zweittest.

Was bringen Antigen (Schnell-) Tests?

Für sehr gute Antigentests werden eine Testsensitivität von 95% und eine Testspezifität von 97% angegeben. Unter den gleichen Bedingungen wie oben (also die Annahme, tatsächlich seien 2% der Getesteten Virenträger) resultiert ein solcher Antigentest in einer Falsch-Positivrate von 60% (s. Abb. 2). Weniger gute Antigentests mit einer Testsensitivität von 90% und einer Testspezifität von 90% führen gar zu einer Falsch-Positivrate von 85% und sind damit bezüglich der Positivaussage fast wertlos.

In Abb. 2 sind die Zusammenhänge bei Variation der Testspezifität von 90% bis 100% und Prävalenzen von 1% bis 10% grafisch dargestellt.

Abbildung 2: Resultierende Falsch-Positiv-Rate in Abhängigkeit von der Testspezifität für Prävalenzen von 1%, 2%, 5% und 10%. Die Testsensitivität wurde hier zu 100% angenommen. Bei einer niedrigeren Sensitivität verschieben sich die Kurven für die Falsch-Positiv-Rate noch etwas nach oben, allerdings ist dieser Effekt bei Sensitivitäten über 90% noch relativ klein.

Was die Beispiele ebenfalls enthüllen: Wahllose Tests sind wenig sinnvoll und richten wahrscheinlich mehr Schaden an, als sie Nutzen stiften. Tests mit einer Spezifität von 97% und darunter sind allenfalls in Bezug auf Risikogruppen mit einer hohen Prävalenz (höhere Wahrscheinlichkeit, tatsächlich infiziert zu sein, z.B. > 10% bis 30%) von Nutzen, denn nur in diesem Fall sinkt die Wahrscheinlichkeit für ein Falsch-Positives Testergebnis unter 20%.

Immerhin ist die Negativaussage (Proband ist nicht infiziert) in all diesen Beispielen mit hoher Wahrscheinlichkeit (95% bis über 99%) zutreffend. Wer also ein negatives Testergebnis bekommt, der darf darauf vertrauen. Natürlich vorausgesetzt, der Test wurde medizinisch und labortechnisch adäquat durchgeführt.

Faustregel

Man kann sich den prinzipiellen Zusammenhang leicht merken.

  • Wenn die relative Häufigkeit für das Auftreten eines bestimmten gesuchten Merkmals (also die Prävalenz) in einer vorgegebenen Gesamtheit p Prozent beträgt, dann hat ein Testverfahren, für das gilt Sensitivität = Spezifität = 100 – p Prozent eine Falsch-Positiv-Rate von exakt 50%.

Beispiel 1: Prävalenz 1%, Sensitivität = Spezifität = 99%, Falsch-Positiv-Rate = 50%.

Beispiel 2: Prävalenz 5%, Sensitivität = Spezifität = 95%, Falsch-Positiv-Rate = 50%.

Oft ist die Sensitivität nahe 100%. In diesem Falle kann man die Falsch-Positiv-Rate leicht anhand der folgenden Faustregel abschätzen.

  • Wenn die relative Häufigkeit für das Auftreten eines bestimmten gesuchten Merkmals (also die Prävalenz) in einer vorgegebenen Gesamtheit p Prozent beträgt, dann hat ein Testverfahren der Genauigkeit 100 – p Prozent (das ist die Testspezifität) eine Falsch-Positiv-Rate von ca. 50%. Für Prävalenzen bis zu 10% ist das eine sehr gute Näherung. Die Sensitivität hat nur einen geringen Einfluss.

Beispiel 3: Prävalenz 2%, Spezifität = 98%, Falsch-Positiv-Rate = 49,5%, Näherungsfehler 0,5%.

Beispiel 4: Prävalenz 10%, Sensitivität = 100%, Spezifität = 90%, Falsch-Positiv-Rate = 47,4%, Näherungsfehler 2,6%.

Das Coronavirus: Harmlos? Bedrohlich? Tödlich?

Für die Politik und die Medien ist die Corona-Pandemie spätestens seit März d. J. das nahezu alles dominierende Thema. Die Gefährlichkeit des Coronavirus stand von Anfang an außer Frage. Deshalb haben die Länder und der Bund im März und April unter fachkundiger Beratung von Virologen und Medizinern schnell drastische Maßnahmen zur Abwendung eines Kollaps des Gesundheitssystems verfügt und einen „Lockdown“ der Wirtschaft und des öffentlichen Lebens beschlossen. Das schien damals die einzige Möglichkeit zu sein, die exponentielle Verbreitung des Virus einzudämmen. Ein richtig harter Lockdown war es nicht, eher ein halbherziger. Obwohl das Virus bereits im November 2019 in China erstmals aufgetaucht war, wusste auch die Wissenschaft zu Beginn des Jahres 2020 noch sehr wenig über das Virus und seine Verbreitungswege. Deswegen war es richtig, vorsorgliche Maßnahmen zu treffen. Besser noch wäre es gewesen, den Lockdown mit größerer Konsequenz durchzuführen.

Nach nahezu täglichen, dramatische Szenarien heraufbeschwörenden Corona-Sondersendungen in ARD und ZDF, war die Mehrheit der Bevölkerung sehr schnell von der Bedrohung durch das Coronavirus überzeugt und stützte den Kurs der Regierung. Mit leichten Einschränkungen gilt das noch heute.

Kritik am Corona-Kurs

Von Anfang an meldeten sich indessen auch Kritiker zu Wort. Den einen waren die Maßnahmen nicht hart und konsequent genug, den anderen gingen sie zu weit, weil sie in vielen Lebensbereichen wirtschaftliche Existenzen zu vernichten drohen. Eine Minderheit von vielleicht 10 – 20 % lehnt die politischen Maßnahmen aus unterschiedlichen Beweggründen heraus vollends ab. Darunter sind Menschen, die ernstliche Sorge um Ihre demokratischen Freiheitsrechte haben. Wieder andere, die gute Gründe zur Relativierung der Corona-Pandemie ins Feld führen und von der Politik zielgenaue und verhältnismäßige Maßnahmen einfordern. Es gibt aber auch eine durchaus nennenswerte Zahl von Wirrköpfen, die sich selbst als „Querdenker“ bezeichnen, dabei aber noch nicht einmal das „Geradeausdenken“ in hinreichendem Maße beherrschen. Wohlgemerkt, das trifft nicht pauschal auf alle „Querdenker“ zu. Dennoch: Die sogenannten Querdenker lehnen die verfügten politischen Maßnahmen rundweg ab. Sie halten das Coronavirus i. W. für harmlos und die Maßnahmen daher schlichtweg für unnötig und schädlich.

Wie fast immer, liegt die Wahrheit in der Mitte. Weder gibt es einen Grund, Katastrophenszenarien heraufzubeschwören, noch darf man die vom Coronavirus ausgehende Gefahr kleinreden.

Wie hoch ist das Risiko?

Unabhängig davon gab und gibt es auch unterschiedliche Einschätzungen zur tatsächlichen Gefährlichkeit des Coronavirus. Einwände kommen dabei nicht nur von „Verschwörungstheoretikern“. Auch eine Minderheit von Medizinern und Virologen gehört dazu, darunter der weltweit renommierteste Epidemiologe, John Ioannidis von der Stanford University. Nach Ioannidis, der dazu eine Reihe von Metastudien ausgewertet hat, liegt die globale Sterblichkeit (Letalität) quer über alle Altersgruppen bei 0,23%. Demnach würde also einer von 450 Infizierten versterben. Das klingt tatsächlich nicht allzu bedrohlich und liegt in der Größenordnung der Letalität einer starken Grippewelle. Indessen ist die Sterblichkeit sehr stark vom Alter der Infizierten und von eventuellen Vorerkrankungen abhängig. Menschen mit Herzerkrankungen, Diabetiker, Raucher, Übergewichtige und alle mit vorgeschädigten Lungen (z.B. aufgrund von Smog) tragen generell ein höheres Risiko.

Betrachten wir im Folgenden die Fakten zu den Infektionszahlen und der resultierenden Sterblichkeit in Deutschland. Per 1. Dezember 2020 gibt es nach Angaben des RKI kumuliert knapp 1,06 Mio. Infizierte (genau 1.057.192), davon sind 16.701 Personen „an oder mit“ Corona verstorben. Daraus können wir leicht eine pauschale Letalität von 1,58% bestimmen. Demnach verstirbt einer von 63 Infizierten. Das ist gewiss nicht wenig und liegt signifikant über der Sterblichkeit der gewöhnlichen Influenza.

Suche nach den richtigen Maßnahmen

Sind also die Maßnahmen der Politik berechtigt? Ist die Corona-Pandemie gar „die größte Herausforderung seit dem zweiten Weltkrieg“, wie Bundeskanzlerin Merkel das formuliert hat? – Letzteres ist definitiv einige Hausnummern zu hoch gegriffen und darf als Beispiel für einen Kakophemismus gelten, also das Gegenteil einer beschönigenden Darstellung. Nur wer diese oberflächliche Faktenanalyse bereits für eine hinreichende Daten- und Entscheidungsgrundlage hält, kann die getroffenen Lockdown-Maßnahmen für sinnvoll und zielführend erachten.

Ebenso wenig wie die absoluten Infektionszahlen erweist sich also auch die o.g. pauschale Letalitätsrate als ungeeignete Messlatte. Wir brauchen mindestens eine differenzierte Betrachtung nach Altersgruppen.

Mortalität

Die Mortalität ist der relative Anteil der an einer bestimmten Krankheit Verstorbenen bezogen auf die Gesamtheit der Bevölkerung oder bezogen auf eine bestimmte Personengruppe (z.B. Menschen eines gegebenen Alters oder die Bevölkerung in einer Region). Beispiel 1: 150 von 1 Million Einwohnern eines Landes sterben infolge einer COVID-19-Erkrankung. Dies entspricht einer (Corona- bzw. COVID-19) Mortalität von 150/1.000.000 = 0,015%. Beispiel 2: 100 von 200.000 Menschen in der Altersgruppe 80+ sterben infolge einer COVID-19-Erkrankung. Dies entspricht einer spezifisch gruppenbezogenen (Corona- bzw. COVID-19) Mortalität von 100/200.000 = 0,5%.

Letalität

Die Letalität ist der relative Anteil der Verstorbenen bezogen auf die Gesamtheit der Infizierten oder die Gesamtheit der Infizierten einer bestimmten Personengruppe. Beispiel 1: 10.000 Personen sind infiziert, davon versterben 150. Dies entspricht einer Letalität von 150/10.000 = 1,5%. Beispiel 2: 2.000 Personen in der Altersgruppe 80+sind infiziert, davon versterben 100. Dies entspricht einer gruppenbezogenen Letalität von 100/2.000 = 5%.

Mortalität und Letalität im Vergleich

Der Unterschied zwischen Mortalität und Letalität besteht darin, dass sich die erste Zahl auf die Gesamtheit der definierten Personengruppe bezieht (Anzahl der Verstorbenen geteilt durch Anzahl der Infizierten bzw. Kranken inklusive Anzahl der Gesunden), während der zweite Wert ausschließlich auf die Untermenge der infizierten Personen abstellt (Anzahl der Verstorbenen geteilt durch Anzahl der Infizierten exklusive Anzahl der Gesunden).

Die Letalität ist somit ein Maß für die Gefährlichkeit einer Infektion bei gegebener Leistungsfähigkeit des Gesundheitssystems und gegebenem Gesundheitszustand des betreffenden Personenkreises. Maßnahmen zum Infektionsschutz haben in erster Näherung keine Auswirkungen auf die Letalität (indirekt aber schon, wenn z.B. besonders gefährdete Gruppen infiziert werden und dadurch die Letalität steigt).

Dagegen misst die Mortalität darüber hinaus das Infektions- bzw. Erkrankungsrisiko. In Bezug auf Corona steckt in der Maßzahl der Mortalität somit auch die Wirksamkeit von Schutzmaßnahmen. Je wirksamer der Infektionsschutz, desto kleiner die Anzahl der Infizierten und demzufolge auch desto geringer die Mortalität. Verkürzt kann man das in folgender Formel zusammenfassen:

Mortalität = Infektionsrisiko * Letalität

Bei 100%-iger Wirksamkeit der Schutzmaßnahmen ist das Infektionsrisiko = 0 und somit die spezifische Mortalität ebenfalls 0. Ohne Schutzmaßnahmen oder mit wenig effektiven Schutzmaßnahmen liegt das Infektionsrisiko in Abhängigkeit von individuellen Faktoren (z.B. Kontakthäufigkeit, Kontaktdauer, Kontaktintensität) irgendwo zwischen 0 und 100%. Im Extremfall, wenn alle Personen der relevanten Bezugsgruppe infiziert sind, ist die Mortalität gleich der Letalität.

Was sind die richtigen Maßnahmen?

Nach dem Vorstehenden kann man die Todesfallzahlen auf zweierlei Weise niedrig halten: 1. Durch die Vermeidung von Infektionen. 2. Durch effektive medizinische Behandlung. Keine Frage, besser ist es allemal, Infektionen ganz zu vermeiden. Dabei kommt es aber darauf an, die Infektionsschutzmaßnahmen dort anzusetzen, wo sie z.B. im Hinblick auf die Reduzierung der Sterbefälle die größtmögliche Wirkung entfalten. Pauschal auf die Gesamtbevölkerung abzielende halbherzige Maßnahmen wie im „Lockdown light“ sind eher ineffektiv, weil sie die große Anzahl der eher wenig gefährdeten Jüngeren unter 60 genauso behandeln, wie die sehr viel stärker bedrohte Personengruppe der über 80-Jährigen.

Wenn man die Infektionszahlen durchgreifend reduzieren will, so dass auch die besonders gefährdeten Altersgruppen 80+ und 60-79 schnell davon profitieren, dann geht das nur mit einem harten Lockdown. Dieser muss so lange dauern, bis die Reproduktionszahl (R-Wert) stabil auf einem Wert deutlich unter 1 verharrt, am besten bei 0,5 bis 0,7. Das ist voraussichtlich nach etwa 3 Wochen der Fall. In der Folge muss der R-Wert dauerhaft unter 1, besser unter 0,9 bleiben. Dafür könnte eine Variante des „Lockdown light“ ausreichen. Für die generelle Diskussion zur Modellbildung s. [27].

Analyse des Datenstandes: Infizierte und Todesfälle

Im Folgenden analysieren wir den Datenstand im gegenwärtigen „Lockdown light“ per 01.12.2020.

Bevölkerungsanteile pro Altersgruppe (2019). Beispiel: 5,68 Mio. bzw. 6,8% der Menschen sind in der Altersgruppe 80 und darüber.

Abbildung 1: Bevölkerungsanteile pro Altersgruppe (2019). Beispiel: 5,68 Mio. bzw. 6,8% der Menschen sind in der Altersgruppe 80 und darüber.

COVID-19-Infizierte pro Altersgruppe. Per 01.12.2020 waren insgesamt 1.057.192 Menschen infiziert.

Abbildung 2: COVID-19-Infizierte pro Altersgruppe. Per 01.12.2020 waren insgesamt 1.057.192 Menschen infiziert.

Der Anteil der Infizierten in der Altersgruppe 80+ liegt bei 7,2%. Für die Altersgruppe 0-59 haben wir 1.401 Infizierte pro 100.000 Personen. Bei den 60-79-Jährigen ist dies mit 820 Infizierten pro 100.000 Personen signifikant geringer ausgeprägt. Auffallend ist, dass die Altersgruppe 80+ der besonders gefährdeten Menschen wiederum einen deutlich erhöhten Infektionsanteil aufweist (1.341 Infizierte pro 100.000 Personen). Dieser Wert ist fast so hoch wie in der Gruppe der 0-59-Jährigen. Die Zahl liegt sogar über dem Durchschnittswert für die Gesamtbevölkerung (1.271 Infizierte pro 100.000 Einwohner).

Im Folgenden werden die Bevölkerungsanteile und die Infektionszahlen einander gegenübergestellt (s. Abb. 3).

Bevölkerungsanteile vs. COVID-19 Infizierte pro Altersgruppe.

Abbildung 3: Bevölkerungsanteile vs. COVID-19 Infizierte pro Altersgruppe. Der Gegenüberstellung entnimmt man, dass die 0-59-Jährigen und die Menschen in der die Altersgruppe 80+ überproportional häufig infiziert sind (10% bzw. 5% über dem Durchschnitt). Bei den 60-79-Jährigen ist der Anteil der Infizierten signifikant geringer (14,02/21,71 65%, d.h., 35% unter dem Durchschnitt).

Die Darstellung in Abb. 3 macht klar, dass die besonders gefährdete Personengruppe der Über-80-Jährigen durch die verfügten Schutzmaßnahmen nicht in dem Maße vor Infektionen geschützt wird, wie dies angesichts des erhöhten Sterberisikos nötig wäre. Wir werden gleich sehen, welche fatale Auswirkung dies auf die Todesfallzahlen hat. Eine der möglichen Ursachen werden wir weiter unten näher beleuchten. Auf der anderen Seite hat zumindest die Altersgruppe der 60-79-Jährigen ein nennenswert geringeres Infektionsrisiko mit positiver Auswirkung auf die Todesfallzahlen. Der Grund dafür könnte darin bestehen, dass sich die Menschen dieser Gruppe des grundsätzlichen Ansteckungsrisikos äußerst bewusst sind und sich proaktiv selbst schützen. Die Altersgruppe 0-59 hat mehr Kontakte und daher auch ein höheres Infektionsrisiko.

Eher geringer sind die Kontaktzahlen wohl in der Altersgruppe 80+, indessen haben viele Menschen in diesem Alter aufgrund von Pflegebedürftigkeit (häuslich oder stationär im Heim) nicht mehr die volle Kontrolle über ihr eigenes Leben und können sich nicht effektiv schützen, daher die überdurchschnittliche Infektionszahl im Vergleich zum Bevölkerungsanteil. Dieser Missstand schlägt sich unmittelbar auf die Todesfallzahlen nieder. In Abb. 4 sind die entsprechenden Werte bezogen auf 100.000 Einwohner dargestellt.

COVID-19 Todesfälle pro Altersgruppe. Per 01.12.2020 waren kumulativ 16.701 Menschen „an oder mit“ COVID-19 verstorben.

Abbildung 4: COVID-19 Todesfälle pro Altersgruppe. Per 01.12.2020 waren kumulativ 16.701 Menschen „an oder mit“ COVID-19 verstorben.

Der Anteil der Sterbefälle in der Altersgruppe 80+ liegt bei 65,6%. Nur 758 bzw. 4,5% der Toten sind der Altersgruppe 0-59 zugeordnet. Dies entspricht einer Inzidenz von 0,9 Fällen pro 100.000 Einwohner verglichen mit 13,2 Fällen in der Altersgruppe 80+ und weniger halb so viel (6,0) in der Altersgruppe 60-79, die indessen mehr als 3-mal mehr Menschen zählt als die Altersgruppe 80+. Es zeigt sich hier schon, dass die Altersgruppe 80+ ungenügend geschützt wird.

COVID-19 Infizierte vs. Todesfälle pro Altersgruppe.

Abbildung 5: COVID-19 Infizierte vs. Todesfälle pro Altersgruppe. In dieser Gegenüberstellung fällt sofort die extreme Asymmetrie zwischen den Infektionszahlen und den Todesfallzahlen pro Altersgruppe ins Auge.

Auf ca. 79% der Infizierten in der Altersgruppe 0-59 fallen nur etwa 4,5% der an COVID-19 Verstorbenen (1,28 Tote pro 100.000 Personen in der Altersgruppe). Weitere 30% der Todesfälle kommen aus der Gruppe der 60-79-Jährigen, die 14% der Infizierten stellen (27,5 Tote pro 100.000 Personen in der Altersgruppe). Fast Zweidrittel (65,64%) der Toten treten auf in der Altersgruppe 80+, die indessen weniger als 7% der Infizierten stellen (193 Tote pro 100.000 Personen in der Altersgruppe).

Analyse des Datenstandes: COVID-19-Mortalität

Die beiden Säulen in Abb. 5 machen transparent, dass die im Vergleich relativ geringe Anzahl an Infizierten aus der Altersgruppe 80+ dennoch die Sterbefälle dominieren. Man kann dies noch klarer aufzeigen durch die Bezugnahme auf die entsprechenden Bevölkerungsanteile. Dies wird in der nachfolgenden Grafik als spezifische Mortalität pro 100.000 Personen der Altersgruppe demonstriert.

Spezifische COVID-19 Mortalität nach Altersgruppen per 01.12.2020.

Abbildung 6: Spezifische COVID-19 Mortalität nach Altersgruppen per 01.12.2020. Man beachte, dass hier die spezifische Mortalität bezogen auf die Personenzahl der betreffenden Altersgruppe aufgetragen ist. Die gestrichelte Linie markiert die durchschnittliche Mortalität über alle Altersgruppen (Rubrik ganz links).

Der vorstehenden Abb. 6 entnimmt man direkt, wie stark die betrachteten Altersgruppen in unterschiedlicher Weise vom Virus betroffen sind und in der Folge die Fallzahlen treiben. Die Altersgruppe 80+ sticht mit einer Mortalität von 193 Todesfällen pro 100.000 Personen derselben Altersgruppe heraus. Vergleicht man die Inzidenzen, so sieht man z.B., dass Individuen in der Altersgruppe 80+ fast 200-mal stärker gefährdet sind als solche der Altersgruppe 0-59. In der Konsequenz registrieren wir damit für die Altersgruppe 80+ eine fast 200-mal höhere individuelle COVID-19-Sterbewahrscheinlichkeit als für die Altersgruppe 0-59. Die Darstellung macht klar, dass die Reduzierung der Todesfallzahlen genau an dieser Stelle ansetzen muss, weil die Falldichte in dieser Gruppe mit Abstand am größten ist.

Es ist wichtig, den Unterschied zwischen dem Kreisdiagramm nach Abb.4 und der Darstellung nach Abb. 6 zu erkennen. Im ersteren Fall sind die Todesfälle der Altersgruppe bezogen auf die Gesamtbevölkerung dargestellt. Es wird also aufgezeigt, welche Altersgruppe wie stark zur gesamten Todesfallzahl beiträgt. Da die Gruppen unterschiedlich groß sind ist damit noch nichts über den Pro-Kopf-Beitrag gesagt. Diese Info, also das individuelle Sterberisiko in den Altersgruppen findet sich in Abb. 6.

Die größte Sensitivität zur Reduzierung der Todesfallzahlen besteht offensichtlich dort, wo der Pro-Kopf-Beitrag zu den Inzidenzen am höchsten ist. Das ist die Altersgruppe 80+ und deshalb muss auch dort der Stellhebel ansetzen. Wenn man es schafft, 100.000 Menschen aus der Altersgruppe 0-59 infektionsfrei zu halten, senkt man damit die Todesfallzahl summarisch um 1. Die gleiche Anzahl infektionsfreier Menschen in der Altersgruppe 80+ reduziert die Fallzahl statistisch bereits um 193 Tote.

Nach Abb. 6 ist es unabweisbar, dass die Fokussierung auf die summarischen Infektionszahlen im Hinblick auf die Eindämmung der Todesfälle wenig bis nichts bringt, weil dadurch vorrangig die (Infektions-) Fallzahlen bei der großen Gruppe der 0-59-Jährigen (59 Mio., s. Abb. 1) reduziert werden. Der Hebel zur Verringerung der Infektionszahlen bei der relativ kleinen Gruppe der Über-80-Jährigen (5,7 Mio., s. Abb. 1)) ist sozusagen zu kurz. Es kommt also darauf an, die gefährdete Altersgruppe 80+ durch direkt wirksame Maßnahmen vor Ansteckung zu schützen. Die getroffenen Maßnahmen können das evident nicht leisten.

Nur zwei Zahlenbeispiele: Wenn in der Altersgruppe 0-59 die Hälfte aller Infektionen vermieden wird, dann resultiert das zunächst einmal nur in einer Reduzierung der Todesfallzahlen um etwa 380 (50% von 758, s. Abb. 4). Dieselbe relative Vermeidung von Infektionen in der Altersgruppe 80+ führt zu einer Verringerung der Sterbefälle um ca. 5.500 (50% von 10.952, s. Abb. 4). Natürlich sind die Infektionszahlen in den diversen Altersgruppen im Allgemeinen nicht völlig unabhängig voneinander, dennoch wird klar, dass die gegenwärtigen Maßnahmen einen effektiven Schutz nicht gewährleisten können, weil sie nach dem Gießkannenprinzip arbeiten und gerade nicht dort ansetzen, wo die größtmögliche Wirkung zu erwarten ist.

Ein Vergleich: Wenn Hochwasser droht, kann man den Damm überall gleichmäßig um einen Meter erhöhen. Das verursacht einen großen Aufwand, ändert aber nichts daran, dass die alte Schwachstelle auch die neue Schwachstelle bleibt. Ist es da nicht viel sinnvoller, den Damm vor allem dort zu stärken, wo er dem Wasser den geringsten Widerstand entgegensetzt? Die schwächste Stelle zu schützen erfordert weniger Aufwand, ist schneller erledigt und hat erwartbar den größten Effekt.

Alter als Risikofaktor

Diesen Aspekt wollen wir im Folgenden vertiefen. Dazu betrachten wir die Letalität in den drei Altersgruppen.

COVID-19-Letalität nach Altersgruppen. Datenstand per 01.12.2020.

Abbildung 7: COVID-19-Letalität nach Altersgruppen. Datenstand per 01.12.2020.

In der Altersgruppe 80+ versterben mehr als 14% der Infizierten. Gut 3% sind es in der Altersgruppe 60-79 und nur 0,09% in der Altersgruppe 0-59. Diese Maßzahlen beschreiben direkt das pauschale Sterberisiko für Individuen in den entsprechenden Gruppen bei einer bereits manifesten Infektion.

Wie Abb. 7 zu entnehmen ist, sind die Über-80-Jährigen mit großem Abstand die am stärksten gefährdete Gruppe. Umso wichtiger ist es, Infektionen in dieser Altersgruppe zu vermeiden. Unterstellt, wir hätten für alle Gruppen dasselbe Infektionsrisiko, müssen, ganz plakativ formuliert, Personen aus der Altersgruppe 80+ um den Faktor 4 ( 14,39/3,36) besser vor Infektionen geschützt werden, als die Menschen aus der Altersgruppe 60-79, und 160-mal besser als die Altersgruppe 0-59 (160 14,39/0,09). Offenbar gelingt dies nicht, wie wir bereits in Abb. 3 gesehen haben.

Wie oben erläutert, steckt im Zahlenwert für die Mortalität u.a. die Wirksamkeit der Schutzmaßnahmen gegen Infektionen, während die Letalität das Sterberisiko bei vorliegender Infektion misst. Abb. 7 können wir entnehmen, dass die Gesamtanzahl der Todesfälle nur auf dem Wege der Senkung der Infektionszahlen in der Altersgruppe der 80+ (Priorität 1) und 60-79 (Priorität 2) gelingen kann. Undifferenzierte Maßnahmen zur allgemeinen Reduzierung der Infektionszahlen wie wir sie gegenwärtig im „Lockdown light“ erleben, sind diesbezüglich nahezu wirkungslos und haben allenfalls einen mittelbaren Effekt.

Heimunterbringung als größter Risikofaktor

Eine besondere Problematik besteht bezüglich der Unterbringung von Betagten in Pflege- und Altenheimen. Dazu folgendes Zitat aus der hessenschau vom 20.11.2020 (s. [19]):

„Wohnen im Altenheim ist derzeit der größte Risikofaktor für einen Tod durch oder mit Covid-19. Das zeigen die November-Zahlen des Landes.“

In Abb. 8 ist die Situation in Hessen plakativ dargestellt.

COVID-19 Sterbefälle in Hessen (Periode 02. – 18. November 2020).

Abbildung 8: COVID-19 Sterbefälle in Hessen (Periode 02. – 18. November 2020)

Es ist auffallend, dass in Hessen fast 2/3 aller COVID-19 Todesfälle im betrachteten Zeitraum unter den Bewohnern von Pflege- und Altenheimen auftraten. Nun kann man diese exemplarischen Zahlen aus Hessen sicher nicht ohne weiteres verallgemeinern. Aktuelle bundesweite Zahlen liegen dem Verfasser nicht vor. Es gibt aber eine Zahl zu den kumulierten Coronatoten bis zum 15. November 2020 für das gesamt Bundesgebiet. Danach wurden 4.170 der bis dahin erfassten insgesamt 12.400 Todesfälle in Pflege- und Altenheimen gezählt. Das ist in der Relation deutlich weniger (33,6%). Also doch kein Corona-Problem in Pflege- und Altenheimen? Leider doch!

Wenn wir die vorstehenden für den 15.11. genannten Zahlen weiter fortschreiben, dann müssen wir damit rechnen, dass per 01.12.2020 anteilig ebenfalls 33,6% der o.g. 16.700 Coronatoten, also 5.600, in Pflege- und Altenheimen verstorben sind. In der Jahreskumulation wurden bislang (per 01.12.2020) 10.962 Coronatote in der Altersgruppe 80+ gezählt, das sind 65% aller COVID-19 Todesfälle. Der Anteil der „an oder mit“ COVID-19 Verstorbenen in Pflege- und Altenheimen unter allen COVID-19-Sterbefällen in der Altersgruppe 80+ liegt also bei 5.600/10.962, das sind ca. 51%. Dabei haben wir unterstellt, dass nahezu alle Bewohner von Pflege- und Altenheimen der Altersgruppe 80+ zuzurechnen sind.

COVID-19 Mortalität nach Altersgruppen per 01.12.2020. Die gestrichelte Linie markiert die Mortalität über alle Altersgruppen (Rubrik ganz links).

Abbildung 9: COVID-19 Mortalität nach Altersgruppen per 01.12.2020. Die gestrichelte Linie markiert die Mortalität über alle Altersgruppen (Rubrik ganz links). Für die Altersgruppe 80+ ergibt sich eine spezifische Mortalität von 0,193% = 193/100.000 (gewichteter Mittelwert aus den beiden Rubriken ganz rechts, s. a. Abb. 6). Im Diagramm ist diese Gruppe gesplittet in zwei Untergruppen in und außerhalb von Pflegeeinrichtungen. Die Zahlenwerte für die betreffenden Mortalitäten in diesen beiden Untergruppen wurden auf Basis obiger Überlegungen abgeschätzt und sind daher mit Unsicherheit behaftet (relativer Fehler etwa ±20%). Die grundlegende Aussage des Diagramms wird dadurch nicht tangiert.

Insgesamt leben etwa 850.000 Menschen in Pflege- und Altenheimen (2015 waren es 783 Tsd., 2017 818 Tsd.). Demzufolge sind in 2020 bislang etwa 5.600 von 850.000 oder 0,66% der Menschen in solchen Einrichtungen „an oder mit“ COVID-19 verstorben. Außerhalb von Heimen waren es ca. 5.400 von knapp 5 Mio. Menschen, also 0,11% die „an oder mit“ COVID-19 gestorben sind. Das pauschale Corona-Sterberisiko ist demzufolge für die Altersgruppe 80+ in Pflege- und Altenheimen 6-mal höher als außerhalb. In Abb. 9 ist das im Vergleich mit den anderen Altersgruppen zusammenfassend dargestellt.

Im Hinblick auf das Vorstehende kann man die Botschaft nach Abb. 9 auch so formulieren: Die COVID-19-Sterbefälle werden zu einem erheblichen Anteil von den Bewohnern von Pflege- und Altenheimen getrieben. Die Hälfte aller Todesfälle der Altersgruppe 80+ tritt auf in dieser gut abgrenzbaren Gruppe von etwa 850.000 Menschen. Wenn man die Gefahr durch Corona wirklich ernst nimmt, dann muss man zuallererst bei den Pflege- und Altenheimen ansetzen. Dort haben zielgenau adaptierte Corona-Maßnahmen den größtmöglichen Effekt. Die gegenwärtigen Maßnahmen sind zu pauschal und undifferenziert für einen nachhaltigen Erfolg. Schlimmer noch, sie verursachen höchst schädliche gesellschaftliche und wirtschaftliche Nebenwirkungen. Man ist gebannt von den pauschalen Infektionszahlen und 7-Tage-Inzidenzen, anstatt gezielt die leicht identifizierbare Gruppe zu schützen, die am meisten gefährdet ist und die die Fallzahlen in die Höhe treibt.

Was man gegenwärtig tut, ist etwa so, als würde man im heißen Sommer alle Freibäder, Hallenbäder und sonstigen Gewässer schließen, um damit sicherzustellen, dass KEIN Nichtschwimmer ertrinkt.

Problemfall Pflege- und Altenheime

Wollen die Verantwortlichen die offensichtlich bestehende Problematik bei den Pflege- und Altenheimen ganz bewusst nicht angehen, weil es da unterm Strich letzten Endes nichts zu gewinnen gibt? Warum ist da nichts zu gewinnen? Wir haben doch gerade eben dargelegt, dass die genannte Gruppe von 850.000 Menschen eine 33-fach höhere Corona-Mortalität im Vergleich zur Gesamtbevölkerung aufweist (33 659/20).

Man darf davon ausgehen, dass der allgemeine Gesundheitszustand der Bewohner von Pflege- und Altenheimen i. d. R. schlechter ist als der Gesundheitszustand von Menschen der gleichen Altersgruppe in häuslicher Pflege oder außerhalb der Pflege. Die Aufnahme in die stationäre Pflege ist ja mit Sicherheit nicht grundlos erfolgt. Mit einer gewissen Wahrscheinlichkeit sind diese Personen teilweise schon gebrechlich, haben Vorerkrankungen und werden medikamentös behandelt. Nicht selten geht dies mit einem geschwächten Immunsystem einher. Dieser Personenkreis trägt also ein besonderes Risiko.

Vermutlich ist es also doch nicht so einfach, das Leben dieser Menschen zu retten. Auch in der Vor-Corona-Zeit sind z.B. 25% aller Bewohner von Pflegeheimen der Stadt Mannheim bereits nach weniger als 3 Monaten stationärer Pflege verstorben. Gar 45% haben die ersten 12 Monate nach Aufnahme nicht überlebt [22]. Wir reden hier also aller Wahrscheinlichkeit nach von einer sehr fragilen Gruppe. Diesen Personenkreis konsequent in allen 11.000 Pflege- und Altenheimen wirksam zu schützen, erfordert einen hohen Aufwand und verspricht trotzdem nur einen geringen Erfolg im Hinblick auf eine dauerhafte Stabilisierung des individuellen Gesundheitszustandes und damit einer effektiven Lebensverlängerung. Es war vor Corona nicht möglich und ist mit Corona nicht einfacher geworden. Ein im Einzelfall wirksamer Infektionsschutz entlastet daher wohl die Corona-Statistik der Todesfallzahlen, nicht aber die Sterbefallzahlen insgesamt. Wir müssen erkennen: Die Grenzen medizinischer Machbarkeit können mit vernünftigem Aufwand nicht beliebig verschoben werden.

Verstorben „an oder mit“ Corona

Fatal ist dabei, dass im Falle des Ablebens in vielen Fällen nach wie vor die tatsächliche Todesursache nicht festgestellt wird und daher, so ist zu vermuten, die mögliche Kausalität des Coronavirus fälschlicherweise als tatsächliche verstanden wird. Durch die Wendung „an oder mit COVID-19 verstorben“ wird das nur scheinbar transparent gemacht. „An oder mit Corona“ heißt nichts anderes als „an Corona oder auch nicht“, noch deutlicher, „an Corona oder an irgendeiner anderen Ursache verstorben“. In den Medien zählen alle diese Fälle als Coronatote und sie werden auch von der Politik in diesem Sinne verwendet sowie ganz selbstverständlich als Argumentationshilfe für die Begründung von Maßnahmen herangezogen. Das ist etwa so, als würde man bei einem Mordfall ohne großes Aufhebens den Mit-Bewohner des Opfers verhaften und der Einfachheit halber kurzerhand schuldig sprechen.

Wie bitte ist eine vernünftige Analyse, Einschätzung und Steuerung in der Corona-Pandemie überhaupt nur denkbar, wenn die notwendige Datengrundlage dazu nicht existiert und offensichtlich auch nicht wirklich vermisst wird? Das ist einer aufgeklärten Wissensgesellschaft unwürdig. Insbesondere bezüglich der Altersgruppe 80+ ist die Todeskausalität eine entscheidende Information, aus dem ganz einfachen Grunde, weil die individuelle Sterbewahrscheinlichkeit auch unabhängig von Corona schon relativ hoch ist und teilweise sogar die Höhe der COVID-19-Letalität übersteigt. Z. B. liegt das durchschnittliche allgemeine Sterberisiko (unabhängig von Corona) in der Altersgruppe 80+ bei 11,5% p.a. (d.h., 11,5% der Über-80-Jährigen versterben innerhalb der nächsten 12 Monate), ist also nur unwesentlich geringer als das Sterberisiko (Letalität) von 14,4% bei einer bereits vorliegenden Corona-Infektion. Neunzigjährige haben mit einem durchschnittlichen allgemeinen Sterberisiko von 18,2% p.a. (unabhängig von Corona) bereits eine höhere Ablebenswahrscheinlichkeit als der durchschnittliche Über-80-Jährige mit Corona-Infektion (14,4%).

Sterberisiko ohne und mit Corona

Im Folgenden vergleichen wir die Sterberisiken ohne und mit Corona.

Allgemeine Mortalität vs. COVID-19 Letalität nach Altersgruppen per 01.12.2020.

Abbildung 10: Allgemeine Mortalität vs. COVID-19 Letalität nach Altersgruppen per 01.12.2020. Zur Interpretation: Gänzlich unabhängig von Corona versterben 11,47% der Individuen aus der Altersgruppe 80+ innerhalb der nächsten 12 Monate. 14,39% der Infizierten versterben infolge ihrer COVID-19-Erkrankung.

Natürlich sind die vorstehend genannten Zahlen statistische Durchschnittswerte. Im Einzelfall gibt es die Spreizung in beide Richtungen. Personen in der Altersgruppe 80+ mit Vorerkrankungen oder gesundheitlichen Einschränkungen (und davon gibt es nicht wenige, immerhin sind 3,4 Mio. in stationärer oder häuslicher Pflege) weisen eher ein höheres durchschnittliches Sterberisiko als die genannten 11,5% auf. Wir haben oben (s. Abb. 8 ff) gesehen, dass ein erheblicher Anteil der Corona-Todesfälle genau dieser problematischen Gruppe zuzurechnen ist (Altersgruppe 80+ in Pflege- und Altenheimen). Teilweise kann das individuelle von Corona unabhängige Sterberisiko für das laufende Jahr oder gar die nächsten Monate leicht in Richtung 100% gehen. Beim Exitus eines solchen Infizierten vermerkt man sodann routinemäßig „an oder mit COVID-19 verstorben“, obwohl doch die Vermutung einer anderen Kausalität nicht von der Hand zu weisen ist.

Zugegeben, hier geht es zunächst nur um die statistische Klarheit. In einem Exempel wurde oben für 24% der Bewohner von Pflegeheimen eine mittlere Verweildauer bis zum Ableben von weniger als 3 Monaten genannt. Für diese Personengruppe ist das Sterberisiko damit also bereits so hoch, dass spezifische Corona-Schutzmaßnahmen zwar in der Statistik die Fallzahlen senken, das Leben der Menschen aber nicht retten können: bei einem wirksamen Schutz sterben sie nicht an COVID-19, sind aber dennoch binnen weniger Wochen oder Monate tot.

Krisenmanagement: ohne Strategie

Nach der vorstehenden Analyse zu den Infektions- und Todesfallzahlen sowie den abgeleiteten Sterbewahrscheinlichkeiten ohne und mit Corona ist vor allem eines klar: Das Management der Corona-Krise ist ein Fiasko. Was wir in der politischen Kommunikation und der Medienberichterstattung zu Corona sehen und hören sind vor allem vordergründige Effekte. Es gibt keine Strategie für eine nachhaltige Senkung der Todesfallzahlen im Einklang mit der Aufrechterhaltung des gesellschaftlichen und wirtschaftlichen Lebens. Politik und Medien lassen sich leiten vom Prinzip Hoffnung, Hoffnung auf einen Impfstoff. Der mag im Laufe der nächsten Monate kommen, dennoch braucht man einen Plan für ein vernünftiges Krisenmanagement. Zu allererst gehört dazu eine klare Kommunikation und die Abkehr von der Politik der Angst- und Panikmache.

Das Coronavirus ist nicht ungefährlich und muss ernst genommen werden, es ist aber auch nicht Pest und Cholera zugleich. Als Pandemie gehört die Coronakrise alles in allem eher noch zu den weniger bedrohlichen Vertretern ihrer Art. Pandemie heißt ja auch nicht, dass es jetzt besonders gefährlich wird (in diesem Sinne wird das Wort gerne von Politikern verwendet), sondern dass die Epidemie nicht regional begrenzt und global verbreitet ist, also „überall“ (pan = griechisch für umfassend, total, ganz). Sie ist gefährlicher als die üblichen jährlichen Grippewellen, die ja ebenfalls nicht regional begrenzt sind. Bislang ist sie aber noch mit sehr großem Abstand harmloser als die spanische Grippe von 1918/19, die nach unterschiedlichen Schätzungen 20 bis 50 Millionen Leben oft junger Menschen forderte und damit insgesamt bis zu 3% der damaligen Weltbevölkerung dahinraffte.

Kommunikation in der Pandemie

Das bereits oben zitierte Gerede von der Corona-Pandemie „als der größten Herausforderung seit dem zweiten Weltkrieg“ (Merkel) wird durch die Fakten nicht ansatzweise gedeckt. Dasselbe gilt für das Heraufbeschwören von „Unheil“. Solche Statements passen natürlich in das Programm der Angst- und Panikmache, das den Bürger ziemlich unverblümt nicht als Gesprächspartner auf Augenhöhe sieht und ihn nachgerade wie ein Kleinkind behandelt.

Wieso trotz allem die Entscheidungen der Politik noch von einer überwältigenden Mehrheit gestützt werden, lässt sich nur durch die eilfertige und unkritische Assistenz der großen Mehrheit der Medien und insbesondere des öffentlich-rechtlichen Rundfunks erklären. Es ist auch nicht weiter verwunderlich: Wenn man täglich mit Schreckensmeldungen über Corona-Infektionszahlen, 7-Tage Inzidenzen, Corona-Hotspots, Todesfällen „an und mit Corona“ und COVID-19-Krankengeschichten bombardiert wird, dann geht das am braven Bürger nicht spurlos vorüber. Er nimmt die Meldungen als das, was sie sind und hat kaum die Zeit und die Möglichkeit, sie kritisch zu überprüfen und in Relation zu setzen. Er ist allenfalls gelegentlich irritiert, weil man ihm heute etwas anders erzählt als gestern und die Botschaft morgen absehbar wieder geändert wird. Dabei tut man so, als wisse man sicher, was richtig ist, und was falsch und nennt gerne die Wissenschaft als Zeugen, die indes vielstimmig sich widersprechende Wissensstände zum Besten gibt. Natürlich betreiben die Medien letztlich nur ihr Geschäft nach dem bewährten Motto „nur eine schlechte Nachricht ist eine gute Nachricht“ (… und verkauft sich daher gut).

Diese Kommunikationsstrategie ist ein Problem, nicht Teil der Lösung. Die Mehrheit der blind Folgenden, tut nur für eine gewisse Zeitspanne, was man ihnen sagt. Wenn sich dann aber keine Besserung der Lage einstellt, und genau das beobachten wir derzeit, verliert man nach und nach die Gefolgschaft der Menschen. Die einen gehen in das Lager der rationalen Kritiker, das erschwert zumindest das Regieren, weil dieser Personenkreis, zu Recht, rational überzeugt werden will. Die anderen, und das sind nicht wenige, wenden sich stattdessen Verschwörungstheorien zu. Das macht das Regieren doppelt schwer, weil man mit Verschwörungstheoretikern nicht vernünftig reden kann. Alles in allem bleibt nur, dem Staatsbürger auf Augenhöhe zu begegnen, ihn ernst zu nehmen und für wirksame Maßnahmen basierend auf einer echten Strategie zu werben.

Man kann es den sogenannten Querdenkern kaum vorhalten, dass sie übers Ziel hinausschießen und dem Coronavirus Harmlosigkeit attestieren. Das ist nur die verständliche Reaktion auf die ebenfalls überzeichnete Darstellung zur Gefährlichkeit des Virus seitens der Politik und der Medien.

Zu einer offenen Kommunikation gehört vor allem, die Fakten nicht bedrohlicher darzustellen als sie sind. Die Berichterstattung krankt an einem selektiven Aufmerksamkeitsfokus. Das schürt den Hype, ist aber nicht zielführend.

Wie bedrohlich ist das Virus wirklich?

Nehmen wir einen nüchternen Blick auf die Gefährlichkeit des Virus im Vergleich zu anderen Lebensrisiken. Dazu betrachten wir zunächst die Sterbefälle insgesamt (unabhängig von Corona).

Sterbefälle (unabhängig von Corona) pro Jahr aufgesplittet nach Altersgruppen. Die Zahlen stammen aus 2018,

Abbildung 11: Sterbefälle (unabhängig von Corona) pro Jahr aufgesplittet nach Altersgruppen. Die Zahlen stammen aus 2018, weil es noch keine Statistiken zu 2020 gibt. In 2020 dürften die Gesamtzahlen nicht wesentlich davon abweichen.

Coronatote im Vergleich zu allen Sterbefälle eines Jahres. Die Zahlen zu den gesamten Sterbefällen stammen aus 2018. Die Angaben zu den Coronatoten („an oder mit Corona“) spiegeln den Datenstand 01.12.2020 wider.

Abbildung 12: Coronatote im Vergleich zu allen Sterbefälle eines Jahres. Die Zahlen zu den gesamten Sterbefällen stammen aus 2018. Die Angaben zu den Coronatoten („an oder mit Corona“) spiegeln den Datenstand 01.12.2020 wider. Da das Jahr noch nicht zu Ende ist, wird sich die Anzahl der Coronatoten noch erhöhen. Bei der gegenwärtigen Dynamik der Fallzahlen ist indes eine durchgreifende Änderung nicht mehr zu erwarten. Die Verhältnisse bleiben nach aller Erwartung im Rahmen dessen, was durch das Diagramm plakativ zum Ausdruck gebracht wird.

In der nachfolgenden Abbildung sind die relativen Anteile der Coronatoten im Vergleich zu allen Sterbefällen direkt dargestellt.

Coronatote im Vergleich zu allen Sterbefälle eines Jahres. Bezugsgröße zu den Sterbefällen ist das Jahr 2018, bei den Coronatoten („an oder mit Corona“) der Datenstand per 01.12.2020.

Abbildung 13: Coronatote im Vergleich zu allen Sterbefälle eines Jahres. Bezugsgröße zu den Sterbefällen ist das Jahr 2018, bei den Coronatoten („an oder mit Corona“) der Datenstand per 01.12.2020. Der relative Anteil der „an oder mit“ COVID-19-Vestorbenen liegt im Durchschnitt über alle Altersgruppen bei 1,75% (s. gestrichelte Linie). Ansonsten gilt die Bemerkung zu Abb. 11.

Man entnimmt Abb. 13 unschwer, dass der Anteil der „an oder mit Corona“-Verstorbenen quer über alle Altersgruppen niedrig bleibt. Sogar bei den als „Risikogruppen“ apostrophierten 60-79-Jährigen und den Über-80-Jährigen erreicht der relative Anteil nur 1,5% – 2%. Wobei man natürlich sehen muss, dass in diesen niedrigen Werten, teilweise und bei aller berechtigten Kritik daran, auch die relative Wirksamkeit der Schutzmaßnahmen zum Ausdruck kommt (s. dazu w. u.). Völlig ohne Masken und Kontaktreduzierungen wären die Zahlen mit Sicherheit höher, zumindest in den Altersgruppen 60-79 und 80+.

Dasselbe gilt für die nachfolgende Grafik, in der das allgemeine Sterberisiko p. a. in Bezug gesetzt wird zu dem Risiko, infolge der Corona-Pandemie zu versterben (s. Abb. 14).

Allgemeines Sterberisiko pro Jahr (ohne Corona) und altersgruppenspezifische Corona-Mortalität im Vergleich. Das allgemeine Sterberisiko wurde auf Basis der Sterbetafel 2017/2019 des Statistischen Bundesamtes (s. [9]) altersgruppengerecht berechnet. Die Angaben zur spezifischen Corona-Mortalität spiegeln den Datenstand per 01.12.2020 wider.

Abbildung 14: Allgemeines Sterberisiko pro Jahr (ohne Corona) und altersgruppenspezifische Corona-Mortalität im Vergleich. Das allgemeine Sterberisiko wurde auf Basis der Sterbetafel 2017/2019 des Statistischen Bundesamtes (s. [9]) altersgruppengerecht berechnet. Die Angaben zur spezifischen Corona-Mortalität spiegeln den Datenstand per 01.12.2020 wider. Wie im Text definiert, beschreibt die Mortalität die Höhe des Sterberisikos für die Individuen aus der betreffenden Altersgruppe. Die Bezugsgröße ist dabei der Umfang der jeweiligen Altersgruppe. Die mittlere Corona-Mortalität liegt im Durchschnitt über alle Altersgruppen bei 0,02% (entsprechend 20 Toten pro 100.000 Ew., s. gestrichelte Linie).

Wie ist Abb. 14 zu interpretieren? Betrachten wir zwei Beispiele. Das allgemeine mittlere Sterberisiko für Individuen aus der Altersgruppe 60-79 beträgt 2,32% (s. mittlere Rubrik in Abb. 14). D. h., 2,32% aller 60-79-Jährigen werden im Laufe der nächsten 12 Monate versterben – völlig unabhängig von Corona und nur aufgrund von Alter, Gesundheitszustand und Lebensumständen. Nun kommt die Corona-Pandemie ins Spiel, sie sorgt dafür, dass 0,028% der Menschen aus dieser Altersgruppe infolge einer COVID-19-Infektion sterben werden. Inwiefern diese 0,028% bereits in den 2,32% enthalten sind oder ggf. ein Anteil davon zu addieren ist, darüber kann man derzeit keine verlässliche Auskunft erteilen, weil die Coronatoten ja immer noch mit dem indifferenten Zusatz „an oder mit Corona“ verstorben gezählt werden. Wie dem auch sei, auch dann, wenn die Corona-Mortalität additiv wirkt, wenn also alle diese Toten echte COVID-19-Todesfälle wären, bliebe das Corona-Zusatzrisiko sehr gering.

Gezielte Maßnahmen reduzieren die Todesfallzahlen

Um es noch einmal zu betonen: Teilweise kommt die Infektionsschutzwirkung durch Masken und Kontaktreduzierung in diesen niedrigen Risikozuwächsen zum Ausdruck. Welchen Anteil die Maßnahmen tatsächlich haben, kann man indessen nur abschätzen. Wir haben oben für die Altersgruppe 80+ mit 1341 Infizierten pro 100.000 Ew. ein überdurchschnittliches Infektionsrisiko festgestellt (s. Abb. 2 und 3). Wenn wir nun im Gedankenexperiment die Infektionszahlen in dieser Gruppe durch einen effektiveren Schutz auf den Durchschnittswert über alle Gruppen verringern, also auf 1271 Infizierte pro 100.000 Ew., dann darf man davon ausgehen, dass auch die Todesfallzahlen im gleichen Maße kleiner werden. Demzufolge sinkt auch die Mortalität entsprechend von 0,193% auf 0,183%. Individuell ist das natürlich nur eine marginale Risikominderung, in der Gesamtpopulation der Altersgruppe wären es dann aber immerhin 0,01%*5,68 Mio. = 568 Tote weniger. Und wenn die Altersgruppe 80+ genauso gut vor Infektionen geschützt sein würde wie die Altersgruppe 60-79 (820 Infizierte pro 100.000 Ew.), dann würde die Mortalität gar nur bei 820/1341*0,193% = 0,118% liegen und wir hätten (0,193% – 0,118%)*5,68 Mio. = 4.260 Coronatote weniger. Nach dem Obigen könnten gezielte Maßnahmen zum besonderen Schutz von Heimbewohnern einen großen – statistisch sichtbaren – Beitrag in dieser Richtung leisten.

Vergleichen heißt nicht verharmlosen

Sind nun die in Abb. 13 eingetragenen Corona-Mortalitäten hoch oder niedrig? Im Kontrast zur allgemeinen und i. W. altersbedingten Mortalität sind die Werte sämtlich relativ klein. Dieser Vergleich ist indessen nicht ganz fair, weil das singulär von Corona ausgehende Risiko mit der Summe aller sonstigen Risiken in Bezug gesetzt wird. Deswegen macht die Gegenüberstellung mit anderen Krankheitsrisiken mehr Sinn (s. dazu das nachfolgende Kreisdiagramm in Abb. 14).

Mortalität und anteilige Sterbefälle verschiedener Krankheiten im Vergleich mit COVID-19. Die Zahl zu Corona reflektiert den Datenstand 01.12.2020, die anderen Werte stammen aus 2018. Für 2020 dürften die Mortalitäten und relativen Anteile nur unwesentlich davon abweichen.

Abbildung 15: Mortalität und anteilige Sterbefälle verschiedener Krankheiten im Vergleich mit COVID-19. Die Zahl zu Corona reflektiert den Datenstand 01.12.2020, die anderen Werte stammen aus 2018. Für 2020 dürften die Mortalitäten und relativen Anteile nur unwesentlich davon abweichen.

Im Vergleich mit den dominierenden Todessursachen Herz-/Kreislauferkrankungen und Krebs mit Mortalitäten von 0,41% bzw. 0,29% nimmt sich die durchschnittliche Corona-Mortalität von 0,02% eher bescheiden aus. Man sieht das auch an den relativen Anteilen unter der Gesamtanzahl der Todesfälle. Natürlich hinkt dieser Vergleich, weil die beiden genannten anderen Ursachen eben keine Infektionskrankheiten sind. Das ist hier aber auch nicht der Punkt. Es geht darum, die tatsächlich bestehende Gefahr und das Risiko für jeden Einzelnen vom Sockel einer sich überschlagenden Berichterstattung und politischen Panikmache zu holen und mit den bestehenden Lebensrisiken in Bezug zu setzen. Nicht um einer unzulässigen Verharmlosung das Wort zu reden, sondern zur Versachlichung der Diskussion. In diese Richtung soll auch die letzte Grafik wirken, in der die Sterbefälle pro Tag nach Todesursachen aufgezeigt sind.

Sterbefälle pro Tag nach Todesursachen. Es handelt sich um gerundete Zahlen aus 2018, sie dürften indessen für 2020 nicht wesentlich abweichen.

Abbildung 16: Sterbefälle pro Tag nach Todesursachen. Es handelt sich um gerundete Zahlen aus 2018, sie dürften indessen für 2020 nicht wesentlich abweichen.

In diesen Tagen werden zum Teil mehr als 500 Coronatote pro Tag gezählt, also Tote, die „an oder mit COVID-19“ verstorben sind. Wenn wir Abb. 16 betrachten, dann erkennen wir, dass andere Todesursachen durchaus noch höheren Tribut fordern. Insgesamt sterben täglich mehr als 2.600 Menschen. Nicht nur jetzt, sondern das ganze Jahr über, Tag für Tag, jahraus, jahrein. Und zwar ohne, dass dies im Fernsehen mit Sondersendungen problematisiert wird.

Keine Frage, dauerhaft 500 Tote täglich aufgrund von Corona, das wäre verheerend. In der aktuellen Entwicklung belegt dies, dass das Virus keineswegs harmlos ist. Dennoch muss man erkennen: Zweidrittel dieser Todesfälle entfallen nach wie vor auf die Altersgruppe 80+ mit einem Bevölkerungsanteil von weniger als 7%. Das Alter der Betroffenen ist der größte Risikofaktor. Auch wenn die Kausalität des Coronavirus im konkreten Falle nachgewiesen werden kann, ist das Alter in vielen Fällen der ausschlaggebende Grund für die fatale Krankheitsentwicklung mit Todesfolge. Diesen Einfluss kann man sogar konkret beziffern: Es ist das Verhältnis der Corona-Letalität der Altersgruppe 80+ zur Letalität der Altersgruppe 0-59. Demnach trägt das Alter bei den Über-80-Jährigen einen 14,39%/0,09% 160-fach höheren Anteil am Tod verglichen mit der Situation bei den 0-59-Jährigen. Diese Sterbefälle sind daher zu einem großen Teil auch altersbedingt, auch wenn als konkreter Auslöser zweifelsfrei das Virus verantwortlich gemacht werden kann. – Nein, das ist weder Zynismus noch Polemik, sondern entspringt der nüchternen Erkenntnis, dass das Leben endlich ist, unabhängig davon, welche Kräfte wir zur Vermeidung des Todes auch immer aufbieten mögen.

Update vom 08.12.2020

Der Anteil der Infizierten und der Todesfälle über 80 steigt weiter. In der Altersgruppe 80+ registrieren wir nun 7,7% der Infizierten und 66,3% der Toten. Dies belegt einmal mehr, dass durch die undifferenzierten Maßnahmen im „Lockdown light“ gerade die am meisten gefährdeten Menschen (z.B. in Pflege- und Altenheimen) eben nicht geschützt werden. Sinnvoller wäre es, sich endlich darum zu kümmern, statt wie gebannt auf Infektions- und Todesfallzahlen zu starren.

Update vom 17.12.2020

Der Anteil der Infizierten und der Todesfälle über 80 steigt weiter. In der Altersgruppe 80+ registrieren wir nun 8,2% der Infizierten und 66,9% der Toten. Der aktuelle Bericht im Münchner Merkur (17.12.2020) über eine Corona-Studie der Ludwig-Maximilians-Universität (LMU) bestätigt die oben getroffenen Aussagen.

Zitate aus dem entsprechenden Bericht:

„3200 der 5156 Coronatoten in Bayern sind über 80 Jahre alt.“

„Die bisherigen Corona-Maßnahmen verfehlen den Schutz der Ältesten“

„Corona-Lockdown: Haben Politiker den Schutz der Alten- und Pflegeheime verschlafen?“

„Es zeigt sich deutlich, dass die ergriffenen Maßnahmen zur Infektionseindämmung für die hoch vulnerable Bevölkerungsgruppe nicht hinreichend zielführend sind.“


Quellen

[1] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 24.11.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Nov_2020/2020-11-24-de.pdf?__blob=publicationFile

[2] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 01.12.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Dez_2020/2020-12-01-de.pdf?__blob=publicationFile

[3] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) 08.12.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Dez_2020/2020-12-08-de.pdf?__blob=publicationFile

[4] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 01. Dezember 2020). Statista

https://de.statista.com/statistik/daten/studie/1103904/umfrage/corona-infektionen-covid-19-in-deutschland-nach-altersgruppe/#professional

[5] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 01. Dezember 2020). Statista

https://de.statista.com/statistik/daten/studie/1104173/umfrage/todesfaelle-aufgrund-des-coronavirus-in-deutschland-nach-geschlecht/

[6] Bevölkerung – Zahl der Einwohner in Deutschland nach Altersgruppen am 31. Dezember 2019. Statista

https://de.statista.com/statistik/daten/studie/1112579/umfrage/bevoelkerung-in-deutschland-nach-altersgruppen/

[7] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S05-Altersspezifische-Sterbewahrscheinlichkeiten-Maenner-ab-1871.html?nn=9992070

[8] Altersspezifische Sterbewahrscheinlichkeiten der Frauen in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S06-Altersspezifische-Sterbewahrscheinlichkeiten-Frauen-ab-1871.html?nn=9992070

[9] Sterbetafel 2017/2019 – Ergebnisse aus der laufenden Berechnung von Periodensterbetafeln für Deutschland und die Bundesländer 2020. DESTATIS – Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Publikationen/Downloads-Sterbefaelle/periodensterbetafel-erlaeuterung-5126203197004.pdf?__blob=publicationFile

[10] Sonderauswertung zu Sterbefallzahlen des Jahres 2020. DESTATIS – Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/sterbefallzahlen.html

[11] Sterbeziffern nach Alter und Geschlecht in Deutschland im Jahr 2017. Statista

https://de.statista.com/statistik/daten/studie/3057/umfrage/sterbeziffern-nach-alter-und-geschlecht/

[12] Anzahl der Sterbefälle in Deutschland nach Altersgruppe im Jahr 2018. Statista

https://de.statista.com/statistik/daten/studie/1013307/umfrage/sterbefaelle-in-deutschland-nach-alter/

[13] Coronavirus: Sterberate in Deutschland niedriger als befürchtet – Übersterblichkeit ist ausgeblieben. RND – Redaktionsnetzwerk Deutschland

https://www.rnd.de/gesundheit/coronavirus-sterberate-in-deutschland-niedriger-als-befurchtet-ubersterblichkeit-ist-ausgeblieben-L4F3KMQP5BGLNJNNMMVDRURP6M.html

[14] Jährliche Todesfälle aufgrund von Krebs und anderen Neubildungen in Deutschland in den Jahren 2000 bis 2018. Statista

https://de.statista.com/statistik/daten/studie/172573/umfrage/krebstote-in-deutschland/

[15] Prävalenz von Krebspatienten auf deutschen Intensivstationen. Springer Medizin

https://www.springermedizin.de/praevalenz-von-krebspatienten-auf-deutschen-intensivstationen/17022898

[16] Todesfälle aufgrund von Herz-Kreislauf-Erkrankungen in Deutschland im Zeitraum der Jahre 1980 bis 2018. Statista

Kreislauf-Erkrankungen – Todesfälle in Deutschland bis 2018 | Statista

[17] Influenza assoziierte Übersterblichkeit (Exzess-Mortalität) in Deutschland für die Saisons von 1984 bis 2019. Statista

https://de.statista.com/statistik/daten/studie/405363/umfrage/influenza-assoziierte-uebersterblichkeit-exzess-mortalitaet-in-deutschland/

[18] Die Grippesaison 2019/20 im Vergleich. Statista

https://de.statista.com/infografik/13040/woechentliche-influenzafaelle-in-deutschland/

[19] Zwei Drittel der Corona-Toten betreffen Altenheime. hessenschau

https://www.hessenschau.de/gesellschaft/zwei-drittel-der-corona-toten-im-november-betreffen-altenheime,corona-altenheim-tote-100.html

[20] Anzahl der zu Hause sowie in Heimen versorgten Pflegebedürftigen in Deutschland in den Jahren 1999 bis 2017. Statista

https://de.statista.com/statistik/daten/studie/36438/umfrage/anzahl-der-zu-hause-sowie-in-heimen-versorgten-pflegebeduerftigen-seit-1999/

[21] Was das Corona-Virus für Pflegekräfte bedeutet (pflegen-online.de).

https://www.pflegen-online.de/corona-fast-4000-intensivpatienten

[22] Demenzkranke in Alten- und Pflegeheimen: Gegenwärtige Situation und Entwicklungstendenzen. Friedrich-Ebert-Stiftung

https://www.fes.de/fulltext/asfo/00234004.htm

[23] Todesursachen – Zahl der Todesfälle. Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/todesfaelle.html

[24] Verteilung der häufigsten Todesursachen in Deutschland im Jahr 2018. Statista

https://de.statista.com/statistik/daten/studie/240/umfrage/verteilung-der-sterbefaelle-nach-todesursachen/

[25] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 08. Dezember 2020). Statista

https://de.statista.com/statistik/daten/studie/1103904/umfrage/corona-infektionen-covid-19-in-deutschland-nach-altersgruppe/#professional

[26] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 08. Dezember 2020). Statista

https://de.statista.com/statistik/daten/studie/1104173/umfrage/todesfaelle-aufgrund-des-coronavirus-in-deutschland-nach-geschlecht/

[27] Das Coronavirus – So schnell breitet es sich aus. Aber wir können etwas tun!

https://www.linkedin.com/pulse/das-coronavirus-so-schnell-breitet-es-sich-aus-aber-fischer/

https://blog.sumymus.de/das-coronavirus-so-schnell-breitet-es-sich-aus-aber-wir-koennen-etwas-tun

[28] Gefahr Corona Virus – Wie groß ist das Risiko wirklich?

https://www.linkedin.com/pulse/gefahr-corona-virus-wie-gro%C3%9F-ist-die-risiko-wirklich-fischer/

https://blog.sumymus.de/gefahr-corona-virus-wie-gross-ist-das-risiko-wirklich

[29] Das objektiv bewertete Corona Risiko

https://www.linkedin.com/pulse/das-objektiv-bewertete-corona-risiko-hieronymus-fischer/

https://blog.sumymus.de/das-objektiv-bewertete-corona-risiko

[30] Aktuelles zu Corona

https://www.linkedin.com/pulse/aktuelles-zu-corona-hieronymus-fischer/

https://blog.sumymus.de/aktuelles-zu-corona

Das objektiv bewertete Corona Risiko

Evaluierung des Risikos auf Basis der altersspezifischen Sterbewahrscheinlichkeiten ohne und mit Corona bei unterschiedlicher Kontakthäufigkeit

Steigende Fallzahlen sind keine Messlatte, denn Risiken sind immer relativ

Im Artikel „Gefahr Corona Virus – Wie groß ist das Risiko wirklich?“ wurde das pauschale Risiko, an COVID-19 zu erkranken und daran zu sterben anhand von 3 unterschiedlichen Kontaktprofilen näherungsweise bestimmt. Dabei wurde auch die Frage erörtert, wie sich das Sterberisiko mit dem Lebensalter und der Kontakthäufigkeit verändert und in welcher Relation das resultierende Gesamtrisiko zur allgemeinen Sterbewahrscheinlichkeit steht. Diese Aspekte wollen wir im Folgenden vertiefen und mittels Grafiken transparent darstellen.

Hinweis: Der eilige Leser kann sich mittels des Diagramms „Sterberisiko ohne und mit Corona in Abhängigkeit vom Lebensalter“ (s. Abb. 6., unten) und den Blick ins Resümee (am Endes des Textes, vor dem Quellenverzeichnis) einen schnellen Überblick verschaffen.

In der öffentlichen Diskussion und insbesondere auch in der Kommunikation des Robert-Koch-Instituts (RKI) stehen nach wie vor die absoluten Corona-Fallzahlen im Vordergrund. Es wurde schon von verschiedener Seite angemerkt, dass dies nicht hinreichend ist. Wenn jemand erzählt, er habe 10-mal die 6 gewürfelt, dann klingt das zunächst einmal nach viel. Das wird stark relativiert, sofern man erfährt, dazu seien 100 oder mehr Würfe nötig gewesen.

Da heute sehr viel häufiger getestet wird als zu Beginn der Pandemie, liegt es auf der Hand, dass auch mehr positive Befunde gezählt werden. Unabhängig von der Problematik der Falsch-Positiven Tests (also fälschlich als positiv erhaltende Testergebnisse, obwohl tatsächlich gar keine Infektion vorliegt, s. a. Gefahr Corona Virus – Wie groß ist das Risiko wirklich? ist daher die absolute Anzahl der positiven Tests kein vernünftiges Maß für die finale Beurteilung der Situation. Tatsächlich gibt auch das RKI die relativen Fallzahlen bekannt (s. Tabelle 1). In den Medien bleibt dieser relativierende und entschärfte Blick aber meist unerwähnt.

Tabelle 1: COVID-19 Positiv-Tests (Stand 2020-08-18). Quelle: RKI

Das Corona-Virus ist nur eines von vielen Lebensrisiken – es macht aber die beste Pressearbeit

Neben der relativen Positivenrate, die aktuell unter 1% liegt, ist der entscheidende Punkt die Ableitung des resultierenden Infektionsrisikos und die Beurteilung des daraus folgenden tatsächlichen Risikos für Infizierte in der Relation zu den allgemeinen Lebensrisiken. Fraglos ist das Leben grundsätzlich nicht risikofrei, wie auch immer man sich vor Gefahren schützen mag. Es ist daher eine unzulässig verkürzte Sicht, die vom Corona-Virus ausgehende und zweifellos tatsächlich bestehende Gefahr völlig isoliert zu betrachten und im Ergebnis dann fast schon als das einzige Krankheits- und Lebensrisiko wahrzunehmen.

Die Berichterstattung in den Medien zeichnet vielfach genau dieses Bild. Bei den Menschen bleibt dies nicht ohne Wirkung. Im Ergebnis wird die tatsächliche Gefahr durch das Corona-Virus in teilweise grotesker Weise überschätzt. Eine weitaus größere Gefahr geht z.B. Krankenhauskeimen aus. Jahr für Jahr sterben etwa 40.000 Menschen daran, ohne dass dies eine allgemeine Aufregung auslösen würde.

Offenbar unterliegen nicht wenige Politiker ebenfalls dieser Fehleinschätzung, anders lässt sich die fortdauernde Diskussion um neuerliche Einschränkungen und vielleicht sogar einen zweiten wirtschaftlichen Lockdown mit möglicherweise verheerenden Folgen kaum erklären.

Die rationale Beurteilung des durch Corona entstehenden Risikos kann daher nur in der Bezugnahme auf die allgemeinen oder individuellen Risiken für Krankheit und Tod erfolgen. Im Folgenden wollen wir dafür insbesondere das altersspezifische Sterberisiko als Vergleichsmaßstab wählen. Die Frage ist also, wird das ohnehin für jedermann und jederzeit bestehende Sterberisiko durch die Corona-Gefahren signifikant erhöht? Und wenn, in welchem Maße und mit welchem Effekt? Oder ist dieser Einfluss fallweise vielleicht sogar vernachlässigbar?

Grundlegender Ansatz zur Risikoeinschätzung

Wir betrachten dazu Personen unterschiedlichen Alters und gegebener Kontakthäufigkeit und vergleichen die neu entstehenden Sterberisiken durch die Corona-Gefahren sowohl untereinander wie auch mit den bestehenden Grundrisiken.

Die relevanten Zahlen kommen vom RKI mit dem Stand 17.08.2020:

COVID-19-Fälle insgesamt = 224014

COVID-19-Todesfälle insgesamt= 9232

COVID-19-Genesene insgesamt = 202100

Daraus leiten wir die Anzahl der aktuell Infektiösen (COVID-19-Infektiöse) zu 12682 ab. Nur wer akut infektiös ist, kann andere Personen anstecken. Es sind zunächst also diese knapp 13000 Personen, von denen eine Gefahr für die weitere Verbreitung von COVID-19 ausgeht.

In diesem Zusammenhang drängt sich die berechtigte Frage auf, was ist, wenn es tatsächlich doch viel mehr Infizierte gibt? Das ist das Problem der Dunkelziffer. Da nicht alle über 80 Mio. Menschen in Deutschland kurzfristig getestet werden können, besteht immer die Gefahr, dass viele Positiv-Fälle unentdeckt bleiben. Es könnte also 20000, 40000 oder noch viel mehr akut Infektiöse geben, ohne dass dies in den Zahlen des RKI ausgewiesen wird. Entsprechend wäre selbstredend auch das Infektionsrisiko möglicherweise um mehrere 100% größer. Die vom RKI diesbezüglich dokumentierten Zahlen würden damit die Realität nur unvollständig, vielleicht sogar unfreiwillig geschönt wiedergeben.

Das Problem der unerkannt Infizierten: Die Dunkelziffer

Was für einen Sinn macht denn bei dieser Ausgangslage überhaupt die Bestimmung des Infektionsrisikos oder des Sterberisikos? Ist das nicht ein Stochern im Nebel? Erfreulicherweise nicht. Im Anhang wird gezeigt, dass zumindest die tatsächlichen COVID-19-Erkrankungs- und Sterberisiken in erster Näherung weitgehend unabhängig von der unzweifelhaft bestehenden Unsicherheit bezüglich der Anzahl der Infizierten sind. Dies gilt jedenfalls dann, wenn wir unterstellen, dass sowohl die validen COVID-19-Erkrankungsfälle als insbesondere auch die Anzahl der vom RKI genannten COVID-19 Sterbefälle als vertrauenswürdig angesehen werden können (s. Tabelle 2).

In der Kurzform kann man sich die Begründung folgendermaßen plausibel machen: Nehmen wir an, wir hätten ad hoc einen hochsicheren Corona-Schnelltest zur Verfügung und könnten binnen eines Tages alle 83 Mio. Menschen in Deutschland testen, mit dem Ergebnis, dass 2,5 Millionen Menschen positiv getestet würden. Was änderte sich dadurch? – Die Anzahl der Infizierten verzehnfachte sich. Das wäre bereits alles! Sowohl die Anzahl der COVID-19-Erkrankungen (die Hospitalisierten) als auch die COVID-19-Todesfälle blieben gleich. Wir hätten zwar die 10-fache Anzahl an Infizierten, effektiv aber auch nur ein Zehntel des Risikos für einen ernsten Verlauf oder Todesfolge. Im Ergebnis bliebe sich das gleich, ja man könnte sogar konstatieren, dass das effektive Risiko offenbar viel kleiner ist, als gedacht.

Nur als Randbemerkung: Gegenwärtig durchspielen wir im Grundsatz genau dieses Szenario. Die absoluten Infektionszahlen steigen, gleichzeitig gehen der Hospitalisierungsgrad und das Sterberisiko zurück (s. Tabelle 2).

Tabelle 2: COVID-19 Fallanalysen (Stand 2020-08-18). Quelle: RKI

Der Anteil der positiv Getesteten liegt derzeit unter 1% mit weiter sinkender Tendenz. Die Zahl der COVID-19-Todesfälle stagniert. Die effektive Todesrate sinkt seit dem Höhepunkt im April mit 7% auf jetzt weniger als 1%, teilweise gar 0,5%.

Kommen wir nun zu der angekündigten Analyse bezüglich der effektiven Erkrankungs- und Sterberisiken aufgrund von Corona.

Vorgehen zur Ableitung einer sinnvollen Risikobeurteilung

Was ist überhaupt ein Risiko? Es kann quantifiziert werden als die Wahrscheinlichkeit für das Eintreten eines definierten ungünstigen Ereignisses. Das maximal ungünstigste Ereignis ist fraglos der Tod. Durch das Sterberisiko wird die Wahrscheinlichkeit quantifiziert, in einem bestimmten Zeitabschnitt abzuleben. Für das allgemeine Sterberisiko gibt es valide Zahlen für alle Altersgruppen. Im Hinblick auf COVID-19 werden je nach Quelle unterschiedliche Angaben zum Sterberisiko gemacht, die zum Teil um mehr als 50% voneinander abweichen. Indessen kommt es bei unserer Betrachtung nicht darauf an, das durch Corona erhöhte altersgruppenspezifische Sterberisiko exakt zu bestimmen (das müssen medizinische Studien leisten), das Ziel ist vielmehr, den Vergleich mit dem bestehenden Grundrisiko vorzunehmen. Wir werden sehen, dass in Abhängigkeit von der Kontakthäufigkeit in fast allen Altersgruppen das von Corona ausgehende Sterberisiko deutlich kleiner ist, als das allgemeine Sterberisiko, teilweise sogar erheblich kleiner (bis zu einem Faktor 100).

Es macht Sinn, drei Aspekte separat zu analysieren und zueinander in Bezug zu setzen.

A. Das allgemeine Sterberisiko einer Altersgruppe bei Abwesenheit von Corona.

B. Das spezifische Sterberisiko einer Altersgruppe bei bestehendem Infektionsrisiko (aber noch nicht erfolgter Infektion).

C. Das spezifische Sterberisiko einer Altersgruppe bei einer vorliegenden COVID-19-Infektion.

Durch A wird die Risikoreferenz gesetzt: Weniger Sterberisiko geht im statistischen Mittel nicht. Fraglos wird durch Corona das Sterberisiko grundsätzlich erhöht. Es ist interessant, zu sehen, wie hoch der Effekt einer COVID-19-Erkrankung (also das Sterberisiko nach C) im Vergleich zu den Grundrisiken hier tatsächlich ist. Unter B betrachten wir das resultierende Sterberisiko als Verkettung der Teilrisiken

B1: Kontakt mit akut ansteckenden Infizierten – B2: Infektion – B3: Ernsthafte Erkrankung (Hospitalisierung) – B4: Todesfolge

COVID-19-Letalität und allgemeines Sterberisiko

Die Teilrisiken B3 und B4 ergeben zusammen das Sterberisiko bei einer vorliegenden COVID-19-Infektion, also die Letalität. In [5] sind diese Werte aus einer chinesischen Studie über mehr als 44.000 Infizierten direkt dokumentiert. Aus den Daten des RKI nach [1] und [2] lässt sich gleichfalls eine Letalität ableiten, die sich indes moderat von den Zahlenwerten nach [1] unterscheidet. In Abb. 1 (COVID-19-Letalität und allgemeines Sterberisiko) sind die erhaltenen altersgruppenspezifischen Letalitätswerte aufgetragen. Für mittlere und hohe Lebensalter ergeben sich vernachlässigbare Unterschiede zwischen den beiden Letalitätskurven. Bei den jüngeren Infizierten (25 Jahre) liegt die aus den Daten des RKI erhaltene Letalität nur bei 0,00045 (orangefarbene Kurve) im Vergleich zu 0,002 (rote Kurve). Das klingt nach einem großen Unterschied, indessen steht aber auch der höhere Letalitätswert für ein letzten Endes sehr geringes COVID-10-Sterberisiko von 1:500 bzw. 0,2% (bei dieser Altersgruppe).

Im Folgenden beziehen wir uns für Jüngere auf die pessimistischeren Werte nach [5] (gelbe Kurve mit gelben Kreisen) und passen die Letalitätswerte für Ältere in Richtung der ungünstigeren Werte des RKI an (grüne Kurve mit grünen Quadraten). Im Ergebnis erhalten wir den roten Graphen in Abb. 1. Angemerkt sei, dass durch die aktuellen Zahlen des RKI (s. Tab. 2) eine weiterhin stark zurückgehende Letalität dokumentiert wird. Im Sinne einer Negativabgrenzung bleiben wir dennoch bei den höheren Werten. Damit können wir sicherstellen, dass das tatsächlich bestehende Risiko eher noch kleiner ist, als das in der nachfolgenden Risikobetrachtung abgeleitete.

Abbildung 1: COVID-19-Letalität und allgemeines Sterberisiko. Dargestellt sind die altersgruppenspezifischen COVID-10-Sterberisiken bei nachgewiesener Infektion mit dem Corona-Virus, einmal abgeleitet aus den Daten des RKI ([1] und [2]), zum anderen übernommen aus einer chinesischen Studie [5]. Die rote Kurve steht für die im Text herangezogene COVID-19-Letalität. Das allgemeine Sterberisiko (ohne Corona) ist zum Vergleich aufgetragen.. Man beachte die logarithmische Skalierung.

Der besseren Übersichtlichkeit halber sind in Abb. 2 die beiden relevanten Kurven nochmals dargestellt.

Abbildung 2: COVID-19-Letalität und allgemeines Sterberisiko. Dargestellt sind das allgemeine Sterberisiko (ohne Corona) und das Sterberisiko bei einer bereits vorliegenden COVID-19-Infektion (Letalität). Man beachte die logarithmische Skalierung.

Vergleicht man nun die rote Kurve mit der blauen der grundsätzlich bestehenden allgemeinen Sterberisiken, so erkennt man, dass, wie nicht anders zu erwarten, das Sterberisiko durch eine vorliegende COVID-10-Infektion erhöht wird. Die Erhöhung ist nicht dramatisch, aber signifikant. Doch ist dieser direkte Vergleich überhaupt aussagefähig? Es wird hier ja unterstellt, man sei bereits mit dem Corona-Virus infiziert, was ja derzeit tatsächlich nur für etwa 0,3% der Bevölkerung zutrifft, akut sogar nur für ca. 0,015%. Für 99,7% besteht das Risiko in der Form nicht bzw. nur sehr indirekt über die Gefahr einer möglichen aber dennoch relativ unwahrscheinlichen Infektion.

Formale Risikobestimmung

Sehr viel sinnvoller ist die Betrachtung der gesamten Risikokette nach B1-B2-B3-B4, wie oben skizziert. Das Risiko B1 für den Kontakt mit einer akut ansteckenden Person hängt unmittelbar ab von der Kontakthäufigkeit. Wir variieren hierzu die Anzahl der Kontaktpersonen von 5 Personen pro Tag über 10, 20 und 50 Personen pro Tag und betrachten ein differenziertes Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90. Aus den Kontakthäufigkeiten können wir nun leicht die statistischen Wahrscheinlichkeiten für die Begegnung mit einer infektiösen Person errechnen und in der Folge die Infektionswahrscheinlichkeit B2 sowie das daraus abgeleitete Erkrankungsrisiko B3 (Hospitalisierung) und letztlich das Sterberisiko B4 bestimmen. Da wir insbesondere an Letzterem interessiert sind, berechnen wir das Sterberisiko mittels der Letalität direkt aus B2.

Der formelmäßige Zusammenhang ist wie folgt:

Sterberisiko B4 = Anzahl Kontakte pro Tag * Infektionsrisiko * Letalität

Nicht jeder Kontakt führt zu einer Infektion. Eine Ansteckung im Vorbeigehen ist sehr unwahrscheinlich. Wenn wir hier von Kontakten sprechen, dann meinen wir schon ein Minimum an Innehalten und beieinanderstehen. Zur Erinnerung: auch die Corona Warn-App dokumentiert nur Kontakte mit einer Verweildauer von mindestens 15 Minuten in weniger als 2 m Abstand. Das tatsächliche Ansteckungsrisiko bei einer normal-distanzierten Begegnung mit Fremden oder Bekannten pro individuellem Kontakt ohne Maske kann auf etwa p_K = 10% abgeschätzt werden, bei einem längeren oder sorgloserem Kontakt vielleicht p_K = 20%. Das Infektionsrisiko bestimmt sich daher zu

Infektionsrisiko = p_K * COVID-19-Infektiöse / Einwohnerzahl

Damit können wir nun die Sterberisiken für die unterschiedlichen Kontaktprofile leicht bestimmen.

Risikoanalyse in Abhängigkeit von der Kontakthäufigkeit

Für die genannten unterschiedlichen Kontaktprofile ist in Abb. 3 das resultierende spezifische Sterberisiko durch Corona dargestellt. Man erkennt, dass bei weniger als 20 Kontakten pro Tag das durch Corona zusätzlich entstehende Sterberisiko über alle betrachteten Altersgruppen hinweg kleiner ist, als das das allgemeine Grundrisiko bei Abwesenheit von Corona. Sogar bei 50 Kontakten pro Tag bleibt das Risiko für die Mehrheit der Altersgruppen unter dem allgemeinen Sterberisiko. Bei 5 Kontakten pro Tag liegt das Corona-Sterberisiko teilweise um eine Zehnerpotenz unter dem bestehenden allgemeinen Sterberisiko. Im Falle des als realitätsnah angesehenen Kontaktprofils (gepunktete orangefarbene Kurve) bleiben wir insbesondere für die Älteren teilweise um mehr als den Faktor 10 unter dem altersspezifischen Grundrisiko. Bei den 25-Jährigen liegen wir auf dem Niveau des allgemeinen Sterberisikos, dies ist indes von geringerer Bedeutung, da diese Altersgruppe ein sehr niedriges Grundrisiko aufweist. Dazu weiter unten mehr.

Anzumerken bleibt, dass wir bei den Gruppen der 25- und 40-Jährigen das Ansteckungsrisiko pro Kontakt auf p_K = 20% taxiert haben, bei allen anderen auf p_K = 10%. Für die von der Anzahl der Kontakte abhängige Bestimmung des Infektionsrisikos haben wir ferner die o.g. Eckdaten des RKI zugrunde gelegt, also aktuell 12682 COVID-19-Infektiöse bei 83. Mio. Einwohnern. Das entspricht einem pauschalen Infektionsrisiko von etwa 0,015% (= 1:6500) pro Kontakt mit sicherer Virusübertragung, bzw. 0,0015% (= 1:65000) pro Kontakt mit 10%-iger Übertragungswahrscheinlichkeit.

Abbildung 3: Spezifisches Sterberisiko durch Corona in Abhängigkeit vom Lebensalter. Man beachte die logarithmische Skalierung. Aufgetragen ist das spezifisch auf Corona zurückzuführende Sterberisiko bei unterschiedlichen Kontaktprofilen.

In Abb. 4 sind dieselben Risikoverläufe dargestellt, nun aber mit linearer statt logarithmischer Skalierung. Bis zum Alter von 50 liegen die Kurven alle so nah an der Nulllinie, dass die Unterschiede kaum erkennbar sind. Bei den Altersgruppen 70, 80 und 90 erkennt man aber unmittelbar, wie klein das durch Corona induzierte zusätzliche Sterberisiko im Vergleich zum altersbedingt bestehenden hohen Sterberisiko ohne Corona ist.

Abbildung 4: Spezifisches Sterberisiko durch Corona in Abhängigkeit vom Lebensalter. Aufgetragen ist das spezifisch auf Corona zurückzuführende Sterberisiko bei unterschiedlichen Kontaktprofilen. Im Unterschied zu Abb. 3 hier in linearer Skalierung.

Effektives Sterberisiko in der „Corona-Pandemie“

Wir haben hier nur das spezifisch durch Corona hinzu gekommene Risiko betrachtet. Natürlich will man auch wissen, wie sich das kumulierte Sterberisiko nun darstellt: Grundrisiko ohne Corona + zusätzliches Sterberisiko durch Corona. Die betreffenden Kurven für die unterschiedlichen Kontaktprofile sind in Abb. 5 dargestellt. Als Referenz ist die Kurve für die Sterbewahrscheinlichkeit ohne Corona ebenfalls mit aufgeführt (gestrichelte blaue Kurve). Wie kaum anders zu erwarten, führt das zusätzliche Risiko durch Corona im Wesentlichen zu einer Vertikalverschiebung der Sterberisikoverläufe nach Lebensalter, eine etwas größere Verschiebung bei der jüngeren Altersgruppe, eine etwas kleinere Verschiebung bei den höheren Lebensaltern.

Abbildung 5: Sterberisiko mit Corona in Abhängigkeit vom Lebensalter. Aufgetragen ist das resultierende Gesamt-Sterberisiko (Grundrisiko plus Zusatzeinfluss durch Corona) bei unterschiedlichen Kontaktprofilen. Man beachte die logarithmische Skalierung.

Man muss hier gar nicht ins Detail gehen, um zu erkennen, dass die resultierenden Sterberisiken unter Einbeziehung der Corona-Gefahr bei maximal 20 Kontakten pro Tag (grüne, gelbe, orangefarbene Kurven und die punktierte Linie) sich nur geringfügig vom bestehenden allgemeinen Sterberisiko abheben. Sogar bei 50 Kontakten pro Tag liegt die resultierende Kurve fast deckungsgleich auf dem Niveau der allgemeinen altersspezifischen Sterbewahrscheinlichkeiten, wie sie in [3] für Männer mit der Jahresreferenz 1986/88 ausgewiesen wird. Etwas flapsig könnte man also sagen, 50 sorglose Kontakte pro Tag sind im Hinblick auf das kumulierte Sterberisiko wie eine Zeitreise zurück in die 1980er Jahre. Das ist weitab von einem Katastrophenszenario.

Bei einem Minimum an vernünftigen Verhalten dürften für die meisten Menschen die Kontaktprofile mit 20 und weniger effektiv zu zählenden Kontakten machbar sein. Damit liegen wir beim resultierenden Sterberisiko durch Corona so nahe an der altersspezifischen Basissterbewahrscheinlichkeit (blaue Kurve), dass man schon in den Bereich der statistischen Unschärfe gerät. Linear interpoliert entspräche etwa die orangefarbene Kurve mit 20 Kontakten pro Tag der allgemeinen Sterbewahrscheinlichkeit für Männer (ohne Corona) um das Jahr 2000 (s. [3]).

Sterberisiko ohne und mit Corona im Vergleich

Im nachfolgenden Balkendiagramm (s. Abb. 6) sind die Sterbewahrscheinlichkeiten ohne und mit Corona nochmals sehr prägnant dargestellt.

Abbildung 6: Sterberisiko ohne und mit Corona in Abhängigkeit vom Lebensalter. Dargestellt sind das Grundrisiko ohne Corona (blau) und das Zusatzrisiko durch Corona (rot). Zugrunde gelegt ist das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90. Die Säulenhöhe markiert das resultierende Gesamtrisiko. Man beachte die logarithmische Skalierung.

Die blauen Balken zeigen das allgemeine Sterberisiko ohne Corona, die roten Balken darüber offenbaren den zusätzlichen Einfluss durch die Corona Gefahr. Die Bezugsgröße ist hier das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90. Die Grafik spricht für sich!

Es fällt auf, dass die Corona-bedingten Zusatzrisiken bei den Jüngeren höher ausfallen als bei den Älteren. Ein deutlich gesteigertes zusätzliches Risiko bei der ersteren Altersgruppe, im Gegensatz dazu ein kaum sichtbares Corona-Zusatzrisiko bei den ganz Alten. Das scheint der beobachteten auffallend hohen COVID-19-Letalität bei Menschen über 60 zu widersprechen.

Wird das Sterberisiko durch Corona nennenswert erhöht?

Auf den ersten Blick vermeintlich noch unklarer wird die Situation, wenn wir direkt die altersgruppenspezifischen Erhöhungen im Sterberisiko miteinander vergleichen.

Wir werfen dazu einen Blick auf Abb. 7. Auf der linken Achse ist die prozentuale Erhöhung des Sterberisikos durch Corona aufgetragen. Sie gilt für die farbigen Kurven mit 5 bis 50 Kontakten pro Tag und das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90 (punktiert). Auf der rechten Achse kann man das Sterberisiko ohne Corona ablesen (blau gestrichelte Linie).

Ein Beispiel: Für die Altersgruppe 40 Jahre weist die grüne Kurve auf der linken Achse einen Wert von 16% auf. Demnach erhöht sich für 40-Jährige das allgemeine Sterberisiko mit durchschnittlich 5 Kontakten pro Tag durch Corona um 16% (also um den Faktor 1,16). Für 80-Jährige erhöht sich das Risiko indessen nur um etwa 6% (also um den Faktor 1,06), für 90-Jährige mit 2 Kontakten pro Tag gar nur um etwa 1% (orangefarbene, punktierte Linie) – das ist kaum messbar. Nochmals extremer wird der Unterschied, wenn man die Erhöhung des Sterberisikos durch Corona bei 25-Jährigen im differenzierten Kontaktprofil mit den Werten bei den 90-Jährigen vergleicht: Es sind 91% mehr im ersten Fall, aber nur 1,3% bei den ganz Alten. Wie kann es angesichts dessen zu der vielfach höheren Anzahl an COVID-19-Sterbefällen bei den Alten im Vergleich zu den Jüngeren kommen?

Bevor wir diese Frage beantworten, wollen wir die Prozentangaben im Hinblick auf das Sterberisiko kurz einordnen. Es ist mittlerweile Allgemeinwissen, dass Bewegung der Gesundheit zuträglich ist, das ist durch zahlreiche Studien belegt. Teilweise werden bereits für moderat intensive Alltagsbewegung eine Reduzierung des Sterberisikos von 19 % und bei höher intensivem Ausdauertraining und Sport von 39 % genannt (s. [12]). Schon damit wird klar: Die abgeleiteten höheren Sterberisiken durch Corona bewegen sich im Bereich von Individualentscheidungen der eigenen Lebensführung. Ähnliches kann man natürlich auch von gesunder Ernährung und dem Verzicht auf potentiell krankmachende Genussmittel (Tabak, Alkohol, Zucker) oder eben deren bewusstem Genuss sagen.

Abbildung 7: Erhöhung des Sterberisikos durch Corona in Abhängigkeit vom Lebensalter. Die farbigen Kurven mit 5 bis 50 Kontakten pro Tag und das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90 (punktiert) zeigen auf der linken Achse die prozentuale Erhöhung des Sterberisikos im entsprechenden Lebensalter an. Das bestehende Grundrisiko ohne Corona wird mittels der blau-gestrichelten Kurve dargestellt (rechte Achse). Man beachte die logarithmische Skalierung in beiden Achsen.

Größere relative Risikosteigerung durch Corona bei den Jungen als bei den Alten

Es besteht nur scheinbar ein Widerspruch, den wir im Folgenden aufklären.

Wie man Abb. 6 entnehmen kann, hat die Altersgruppe der25-Jährigen statistisch gesehen auch inklusive des Corona-bedingten zusätzlichen Sterberisikos immer noch eine vielfach höhere Überlebenswahrscheinlichkeit (ca. 65-fach) im Vergleich zur Gruppe der 80-Jährigen (man beachte die logarithmische Skalierung). Verglichen mit den 90-Jährigen ist dieser Wert gar um den Faktor 210 höher. Das bleibt bezüglich der tatsächlichen Sterbezahlen natürlich nicht ohne Folge und erklärt die vermeintliche Unstimmigkeit.

In [6] sind u.a. die Todesraten für die Gruppe der 20-29-Jährigen und die Gruppe der 80-89-Jährigen dokumentiert. Den 8 COVID-19-Toten im Alter zwischen 20 und 30 stehen 3704 COVID-19-Sterbefälle im Alter zwischen 80 und 90 gegenüber, das sind 463-mal so viele.

Um die Auflösung des Widerspruchs an einem Beispiel plausibel zu machen: Nehmen wir zwei Trinkbecher. Den ersten machen wir halbvoll mit Wasser, den zweiten füllen wir bis knapp unter den Rand. In beiden Bechern markieren wir den Füllstand. Nun lassen wir aus geringer Höhe einen Kieselstein in den ersten Becher fallen. Was beobachten wir? Das Wasser gerät in Wallung und schwappt hoch, bleibt aber unterhalb des Becherrands. Nur einige weniger Spritzer gehen darüber hinaus. Wir nehmen den Kieselstein heraus und betrachten den Füllstand im ersten Becher: keine merkliche Veränderung.

Kommen wir zum zweiten Becher. Aus der gleichen Höhe wie zuvor lassen wir den Kieselstein in den Becher fallen. Was passiert? Wieder kommt das Wasser in Wallung. Weil aber der Füllstand sehr hoch ist, schwappt nun einiges vom Inhalt über den Rand hinaus. Wenn wir den Stein herausnehmen, sehen wir, dass die Füllmenge im zweiten Becher deutlich sichtbar unterhalb der Füllstandmarkierung liegt.

In beiden Fällen war die äußere Anregung dieselbe, in Relation zum Inhalt war die Einwirkung beim ersten Becher sogar doppelt so stark. Trotzdem konstatieren wir im Ergebnis einen signifikanten Unterschied zu Ungunsten der Situation beim zweiten Becher mit der in Relation nur halb so starken äußeren Einwirkung.

Die wenigen Wasserspritzer aus dem ersten Becher stehen für die sehr niedrigen COVID-19-Todesraten bei den 20-29-Jährigen. Der viel höhere Verlust an Füllmenge im zweiten Becher entspricht der im Vergleich so überaus beträchtlicheren relativen und absoluten COVID-19-Sterblichkeit bei den über 80-Jährigen.

Was man der oben zitierten Sterbegrafik in [6] übrigens auch entnehmen kann: Nur etwa 0,2% aller Todesfälle bei den 20-29-Jährigen und etwa 1% bei den 80-89-Jährigen gehen tatsächlich auf COVID-19 zurück. Nach wie vor sind also die „allgemeinen Sterberisiken“ in einer angesichts der vorherrschenden Pandemie-Stimmung fast surreal anmutenden Weise dominant gegenüber der von COVID-19 ausgehenden Gefahr. Sogar in der Altersgruppe der besonders gefährdeten über 80-Jährigen sterben unglaubliche 99% aufgrund von anderen Todesursachen.

Resümee

Aus den vorliegenden Daten zu den Fallzahlen der mit dem Corona-Virus Infizierten, der Genesenen und den COVID-19-Todesfällen haben wir durch Vergleich mit den altersspezifischen Sterbewahrscheinlichkeiten aus der Vor-Corona-Zeit das vom Virus ausgehende tatsächliche Risiko bestimmt. Es zeigt sich, dass dieses Zusatzrisiko relativ gering ist und sich einordnet in die Höhe der individuellen Lebensrisiken aufgrund persönlicher Entscheidungen zur Lebensführung (z.B. betreffend Gesundheitsvorsorge, Ernährung und Sport).

Tatsächlich sind Herz-Kreislaufversagen mit 36% aller Fälle und Krebs mit 25% die häufigsten Todesursachen, mehr als eine halbe Million sterben jedes Jahr daran. Sogar Stürze (16.201 in 2018) liegen mit einem Anteil von 1,7% aller Todesursachen noch klar über der Anzahl der COVID-19-Todesfälle. Hat man deswegen schon erwägt, Haushaltsleitern zu verbieten? Die Anzahl der Suizide ist in etwa auf dem Niveau der durch Corona bedingten Todesfälle.

Fakt ist: Nur etwa 0,2% aller Todesfälle bei den 20-29-Jährigen und etwa 1% bei den 80-89-Jährigen gehen tatsächlich auf COVID-19 zurück. Das steht im Einklang mit dem abgeschätzten COVID-19-Sterberisiko als Endprodukt der Kette „Kontakt mit akut ansteckenden Infizierten“ – „Infektion“ – „Ernsthafte Erkrankung (Hospitalisierung)“ – „Tod“. Unter Zugrundelegung eines differenzierten Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90 hatten wir für die Gruppe der Jüngeren (25 Jahre) ein Zusatzrisiko von 20 % erhalten, was hier allerdings nicht durchschlägt, weil das Sterberisiko von 25-Jährigen per se vernachlässigbar ist (s. o.). Bei den sehr Alten (über 80) liegt das Zusatzrisiko nur bei 1 – 4 %. Das tagesbezogene Sterberisiko vergrößert sich hier für die 80-Jährigen von 1:6083 auf 1:5871 und für die 90-Jährigen von 1:1825 auf 1:1802 – das sind kaum wirklich nennenswerte Unterschiede.

Der Anteil der positiv Getesteten liegt derzeit unter 1% mit weiter sinkender Tendenz. Die Zahl der COVID-19-Todesfälle stagniert. Die effektive Todesrate ist seit dem Höhepunkt im April mit 7% auf weniger als 1% gefallen, und sie sinkt weiter, teilweise auf 0,5%.

Es erscheint völlig klar, dass diese Zahlen eine weitere Beeinträchtigung des öffentlichen Lebens und der Wirtschaft in der bisherigen Form in keiner Weise rechtfertigen. Man muss vielmehr genau hinschauen, welche Verbote überhaupt noch ihren Sinn erfüllen. Das gilt sicher für Massenveranstaltungen mit wahllosen und engen Kontakten. Nahezu alles andere muss aber auf den Prüfstand. Das heißt nicht, die Corona-Gefahr zu leugnen, es heißt vielmehr, der tatsächlichen bestehenden Gefahr mit Vernunft und Augenmaß zu begegnen. Gutmeinend erlassene Verbote helfen da nicht weiter, schon gar nicht Denkverbote.

Das Gerede von der Corona-Pandemie „als der größten Herausforderung seit dem zweiten Weltkrieg“ ist grob fahrlässig und hat im Ergebnis einen beträchtlichen Schaden in nahezu allen Lebensbereichen angerichtet. Diese Aussage ist ein politischer Kakophemismus, der durch die Fakten nicht ansatzweise gedeckt wird. Sogar auf dem Höhepunkt der sogenannten ersten Welle waren die Intensivbettkapazitäten in Deutschland nur zu etwa 6% ausgelastet. Vermutlich sind viele an anderen Krankheiten gestorben, weil die Bettenkapazitäten für potentielle COVID-19-Patienten reserviert worden waren (mussten). Von den wirtschaftlichen Auswirkungen und mittelbaren Kollateralschäden ganz zu schweigen.

Quellen

[1] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 24. August 2020). Statista

[2] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 24. August 2020). Statista

[3] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

[4] Altersspezifische Sterbewahrscheinlichkeiten der Frauen in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

[5] Sterblichkeitsrate nach Risikogruppen – Für wen ist das Coronavirus besonders gefährlich? RTL.de, 08. Juni 2020

[6] Altersabhängigkeit der Todesraten im Zusammenhang mit COVID-19 in Deutschland. Dtsch Arztebl Int 2020; 117: 432-3; DOI: 10.3238/arztebl.2020.0432

(Grafik 1: https://www.aerzteblatt.de/callback/image.asp?id=107167, Grafik 2: https://www.aerzteblatt.de/callback/image.asp?id=107168)

[7] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 17.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

[8] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) 18.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

[9] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) 19.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

[10] Todesursachen – Zahl der Todesfälle. Statistisches Bundesamt

[11] Verteilung der häufigsten Todesursachen in Deutschland im Jahr 2018. Statista

[12] Bewegung senkt Sterberisiko um bis zu 40 Prozent. Universität Wien, 2011

Anhang

Begründung für die Annahme der Unabhängigkeit des effektiven COVID-19-Erkrankungs- und Sterberisikos von der Dunkelziffer bezüglich der Anzahl der Infizierten

Das Infektionsrisiko wird direkt durch der Anzahl der akut Infizierten determiniert. Die Dunkelziffer bezüglich der Anzahl der Infizierten führt daher unmittelbar zu einem entsprechenden Fehler bei der Bestimmung des Risikos. Das pauschale Infektionsrisiko wird nach der Formel

Infektionsrisiko = COVID-19-Infektiöse / Einwohnerzahl

berechnet. Doppelte Anzahl an Infizierten, heißt also auch doppeltes Infektionsrisiko.

Infektionsrisiko_RKI sei das Infektionsrisiko ohne Dunkelziffer, Infektionsrisiko_eff das effektive Infektionsrisiko inklusive der als bekannt gedachten Dunkelziffer.

Bekanntlich hat nicht jeder Infizierte wirklich ernsthafte Symptome. Nach den letzten Zahlen des RKI sind derzeit (KW 30 in 2020 und später), quer über alle Altersklassen maximal 10% der dokumentierten Infizierten hospitalisiert, also so krank, dass sie stationär behandelt werden müssen. Noch im April waren es 20% (s. Tabelle 2). Wir dürfen davon ausgehen, dass nahezu alle ernsthaft an COVID-19 Erkrankten in der Statistik erfasst werden. Demnach ist also die (absolute) Anzahl der COVID-19-Erkrankten vertrauenswürdig, nicht aber der (relative) Hospitalisierungsgrad, wie er vom RKI ausgewiesen wird.

Dazu folgende Überlegung:

COVID-19-Hospitalisierungsgrad_RKI = COVID-19-Erkrankte / COVID-19-Infizierte

Der Zähler ist verlässlich und fix, der Nenner stark mit Unsicherheit behaftet. Doppelt so viele Infizierte (Dunkelziffer), heißt daher halber Hospitalisierungsgrad.

Für Gesunde bleibt demnach das tatsächliche COVID-19-Erkrankungsrisiko unabhängig von der Unschärfe bezüglich der Anzahl der Infizierten. Bei der doppelten Anzahl an Infizierten aufgrund einer möglichen Dunkelziffer, verdoppelt sich zwar das effektive Infektionsrisiko, das wird aber kompensiert durch den in entsprechendem Maße halbierten effektiven Hospitalisierungsgrad, denn die absolute Anzahl der Hospitalisierten liegt fest:

Infektionsrisiko_eff * COVID-19-Hospitalisierungsgrad_eff = Infektionsrisiko_RKI * COVID-19-Hospitalisierungsgrad_RKI

Ähnlich verhält es sich mit dem COVID-19-Sterberisiko. Das vom RKI ausgewiesene spezifische COVID-19-Sterberisiko (Letalität) liegt seit Mitte des Jahres bei unter 1% mit weiter sinkender Tendenz (s. Tabelle 2). Es ist wie folgt definiert:

COVID-19-Sterberisiko = COVID-19-Todesfälle / COVID-19-Infizierte

(jeweils bezogen auf gleiche Zeitabschnitte).

Auch hier dürfen wir wieder davon ausgehen, dass die validen COVID-19 Todesfälle nahezu vollständig in der Statistik des RKI dokumentiert sind. Für Gesunde bleibt daher das effektive COVID-19-Sterberisiko unbeeinflusst von der Unsicherheit bezüglich der Dunkelziffer betreffend der Infizierten. Bei der im Beispiel doppelten Anzahl an Infizierten, verdoppelt sich das Infektionsrisiko. Das wird kompensiert durch das dann in gleichem Maße halbierte effektive COVID-19-Sterberisiko, denn die absolute Anzahl der Sterbefälle liegt fest:

Infektionsrisiko_eff * COVID-19-Sterberisiko_eff = Infektionsrisiko_RKI * COVID-19-Sterberisiko_RKI

Insgesamt dürfen wir daher sowohl beim Erkrankungsrisiko (Hospitalisierungsgrad) als auch beim Sterberisiko (Letalität) die absoluten Zahlen des RKI unmittelbar verwenden. Gleichviel, wie hoch die Anzahl der COVID-19-Infizierten tatsächlich ist (Dunkelziffer) und wie viele Falsch-Positive darunter auch sein mögen: bezogen auf das Erkrankungs- und Sterberisiko für die Gesamtpopulation ändert sich dadurch nichts. Entscheidend für das effektiv bestehende Risiko sind ausschließlich die absoluten Zahlen betreffend der Hospitalisierung und der spezifischen COVID-19-Todesfälle.