Archiv der Kategorie: Wirtschaft

Das objektiv bewertete Corona Risiko

Evaluierung des Risikos auf Basis der altersspezifischen Sterbewahrscheinlichkeiten ohne und mit Corona bei unterschiedlicher Kontakthäufigkeit

Steigende Fallzahlen sind keine Messlatte, denn Risiken sind immer relativ

Im Artikel „Gefahr Corona Virus – Wie groß ist das Risiko wirklich?“ wurde das pauschale Risiko, an COVID-19 zu erkranken und daran zu sterben anhand von 3 unterschiedlichen Kontaktprofilen näherungsweise bestimmt. Dabei wurde auch die Frage erörtert, wie sich das Sterberisiko mit dem Lebensalter und der Kontakthäufigkeit verändert und in welcher Relation das resultierende Gesamtrisiko zur allgemeinen Sterbewahrscheinlichkeit steht. Diese Aspekte wollen wir im Folgenden vertiefen und mittels Grafiken transparent darstellen.

Hinweis: Der eilige Leser kann sich mittels des Diagramms „Sterberisiko ohne und mit Corona in Abhängigkeit vom Lebensalter“ (s. Abb. 6., unten) und den Blick ins Resümee (am Endes des Textes, vor dem Quellenverzeichnis) einen schnellen Überblick verschaffen.

In der öffentlichen Diskussion und insbesondere auch in der Kommunikation des Robert-Koch-Instituts (RKI) stehen nach wie vor die absoluten Corona-Fallzahlen im Vordergrund. Es wurde schon von verschiedener Seite angemerkt, dass dies nicht hinreichend ist. Wenn jemand erzählt, er habe 10-mal die 6 gewürfelt, dann klingt das zunächst einmal nach viel. Das wird stark relativiert, sofern man erfährt, dazu seien 100 oder mehr Würfe nötig gewesen.

Da heute sehr viel häufiger getestet wird als zu Beginn der Pandemie, liegt es auf der Hand, dass auch mehr positive Befunde gezählt werden. Unabhängig von der Problematik der Falsch-Positiven Tests (also fälschlich als positiv erhaltende Testergebnisse, obwohl tatsächlich gar keine Infektion vorliegt, s. a. Gefahr Corona Virus – Wie groß ist das Risiko wirklich? ist daher die absolute Anzahl der positiven Tests kein vernünftiges Maß für die finale Beurteilung der Situation. Tatsächlich gibt auch das RKI die relativen Fallzahlen bekannt (s. Tabelle 1). In den Medien bleibt dieser relativierende und entschärfte Blick aber meist unerwähnt.

Tabelle 1: COVID-19 Positiv-Tests (Stand 2020-08-18). Quelle: RKI

Das Corona-Virus ist nur eines von vielen Lebensrisiken – es macht aber die beste Pressearbeit

Neben der relativen Positivenrate, die aktuell unter 1% liegt, ist der entscheidende Punkt die Ableitung des resultierenden Infektionsrisikos und die Beurteilung des daraus folgenden tatsächlichen Risikos für Infizierte in der Relation zu den allgemeinen Lebensrisiken. Fraglos ist das Leben grundsätzlich nicht risikofrei, wie auch immer man sich vor Gefahren schützen mag. Es ist daher eine unzulässig verkürzte Sicht, die vom Corona-Virus ausgehende und zweifellos tatsächlich bestehende Gefahr völlig isoliert zu betrachten und im Ergebnis dann fast schon als das einzige Krankheits- und Lebensrisiko wahrzunehmen.

Die Berichterstattung in den Medien zeichnet vielfach genau dieses Bild. Bei den Menschen bleibt dies nicht ohne Wirkung. Im Ergebnis wird die tatsächliche Gefahr durch das Corona-Virus in teilweise grotesker Weise überschätzt. Eine weitaus größere Gefahr geht z.B. Krankenhauskeimen aus. Jahr für Jahr sterben etwa 40.000 Menschen daran, ohne dass dies eine allgemeine Aufregung auslösen würde.

Offenbar unterliegen nicht wenige Politiker ebenfalls dieser Fehleinschätzung, anders lässt sich die fortdauernde Diskussion um neuerliche Einschränkungen und vielleicht sogar einen zweiten wirtschaftlichen Lockdown mit möglicherweise verheerenden Folgen kaum erklären.

Die rationale Beurteilung des durch Corona entstehenden Risikos kann daher nur in der Bezugnahme auf die allgemeinen oder individuellen Risiken für Krankheit und Tod erfolgen. Im Folgenden wollen wir dafür insbesondere das altersspezifische Sterberisiko als Vergleichsmaßstab wählen. Die Frage ist also, wird das ohnehin für jedermann und jederzeit bestehende Sterberisiko durch die Corona-Gefahren signifikant erhöht? Und wenn, in welchem Maße und mit welchem Effekt? Oder ist dieser Einfluss fallweise vielleicht sogar vernachlässigbar?

Grundlegender Ansatz zur Risikoeinschätzung

Wir betrachten dazu Personen unterschiedlichen Alters und gegebener Kontakthäufigkeit und vergleichen die neu entstehenden Sterberisiken durch die Corona-Gefahren sowohl untereinander wie auch mit den bestehenden Grundrisiken.

Die relevanten Zahlen kommen vom RKI mit dem Stand 17.08.2020:

COVID-19-Fälle insgesamt = 224014

COVID-19-Todesfälle insgesamt= 9232

COVID-19-Genesene insgesamt = 202100

Daraus leiten wir die Anzahl der aktuell Infektiösen (COVID-19-Infektiöse) zu 12682 ab. Nur wer akut infektiös ist, kann andere Personen anstecken. Es sind zunächst also diese knapp 13000 Personen, von denen eine Gefahr für die weitere Verbreitung von COVID-19 ausgeht.

In diesem Zusammenhang drängt sich die berechtigte Frage auf, was ist, wenn es tatsächlich doch viel mehr Infizierte gibt? Das ist das Problem der Dunkelziffer. Da nicht alle über 80 Mio. Menschen in Deutschland kurzfristig getestet werden können, besteht immer die Gefahr, dass viele Positiv-Fälle unentdeckt bleiben. Es könnte also 20000, 40000 oder noch viel mehr akut Infektiöse geben, ohne dass dies in den Zahlen des RKI ausgewiesen wird. Entsprechend wäre selbstredend auch das Infektionsrisiko möglicherweise um mehrere 100% größer. Die vom RKI diesbezüglich dokumentierten Zahlen würden damit die Realität nur unvollständig, vielleicht sogar unfreiwillig geschönt wiedergeben.

Das Problem der unerkannt Infizierten: Die Dunkelziffer

Was für einen Sinn macht denn bei dieser Ausgangslage überhaupt die Bestimmung des Infektionsrisikos oder des Sterberisikos? Ist das nicht ein Stochern im Nebel? Erfreulicherweise nicht. Im Anhang wird gezeigt, dass zumindest die tatsächlichen COVID-19-Erkrankungs- und Sterberisiken in erster Näherung weitgehend unabhängig von der unzweifelhaft bestehenden Unsicherheit bezüglich der Anzahl der Infizierten sind. Dies gilt jedenfalls dann, wenn wir unterstellen, dass sowohl die validen COVID-19-Erkrankungsfälle als insbesondere auch die Anzahl der vom RKI genannten COVID-19 Sterbefälle als vertrauenswürdig angesehen werden können (s. Tabelle 2).

In der Kurzform kann man sich die Begründung folgendermaßen plausibel machen: Nehmen wir an, wir hätten ad hoc einen hochsicheren Corona-Schnelltest zur Verfügung und könnten binnen eines Tages alle 83 Mio. Menschen in Deutschland testen, mit dem Ergebnis, dass 2,5 Millionen Menschen positiv getestet würden. Was änderte sich dadurch? – Die Anzahl der Infizierten verzehnfachte sich. Das wäre bereits alles! Sowohl die Anzahl der COVID-19-Erkrankungen (die Hospitalisierten) als auch die COVID-19-Todesfälle blieben gleich. Wir hätten zwar die 10-fache Anzahl an Infizierten, effektiv aber auch nur ein Zehntel des Risikos für einen ernsten Verlauf oder Todesfolge. Im Ergebnis bliebe sich das gleich, ja man könnte sogar konstatieren, dass das effektive Risiko offenbar viel kleiner ist, als gedacht.

Nur als Randbemerkung: Gegenwärtig durchspielen wir im Grundsatz genau dieses Szenario. Die absoluten Infektionszahlen steigen, gleichzeitig gehen der Hospitalisierungsgrad und das Sterberisiko zurück (s. Tabelle 2).

Tabelle 2: COVID-19 Fallanalysen (Stand 2020-08-18). Quelle: RKI

Der Anteil der positiv Getesteten liegt derzeit unter 1% mit weiter sinkender Tendenz. Die Zahl der COVID-19-Todesfälle stagniert. Die effektive Todesrate sinkt seit dem Höhepunkt im April mit 7% auf jetzt weniger als 1%, teilweise gar 0,5%.

Kommen wir nun zu der angekündigten Analyse bezüglich der effektiven Erkrankungs- und Sterberisiken aufgrund von Corona.

Vorgehen zur Ableitung einer sinnvollen Risikobeurteilung

Was ist überhaupt ein Risiko? Es kann quantifiziert werden als die Wahrscheinlichkeit für das Eintreten eines definierten ungünstigen Ereignisses. Das maximal ungünstigste Ereignis ist fraglos der Tod. Durch das Sterberisiko wird die Wahrscheinlichkeit quantifiziert, in einem bestimmten Zeitabschnitt abzuleben. Für das allgemeine Sterberisiko gibt es valide Zahlen für alle Altersgruppen. Im Hinblick auf COVID-19 werden je nach Quelle unterschiedliche Angaben zum Sterberisiko gemacht, die zum Teil um mehr als 50% voneinander abweichen. Indessen kommt es bei unserer Betrachtung nicht darauf an, das durch Corona erhöhte altersgruppenspezifische Sterberisiko exakt zu bestimmen (das müssen medizinische Studien leisten), das Ziel ist vielmehr, den Vergleich mit dem bestehenden Grundrisiko vorzunehmen. Wir werden sehen, dass in Abhängigkeit von der Kontakthäufigkeit in fast allen Altersgruppen das von Corona ausgehende Sterberisiko deutlich kleiner ist, als das allgemeine Sterberisiko, teilweise sogar erheblich kleiner (bis zu einem Faktor 100).

Es macht Sinn, drei Aspekte separat zu analysieren und zueinander in Bezug zu setzen.

A. Das allgemeine Sterberisiko einer Altersgruppe bei Abwesenheit von Corona.

B. Das spezifische Sterberisiko einer Altersgruppe bei bestehendem Infektionsrisiko (aber noch nicht erfolgter Infektion).

C. Das spezifische Sterberisiko einer Altersgruppe bei einer vorliegenden COVID-19-Infektion.

Durch A wird die Risikoreferenz gesetzt: Weniger Sterberisiko geht im statistischen Mittel nicht. Fraglos wird durch Corona das Sterberisiko grundsätzlich erhöht. Es ist interessant, zu sehen, wie hoch der Effekt einer COVID-19-Erkrankung (also das Sterberisiko nach C) im Vergleich zu den Grundrisiken hier tatsächlich ist. Unter B betrachten wir das resultierende Sterberisiko als Verkettung der Teilrisiken

B1: Kontakt mit akut ansteckenden Infizierten – B2: Infektion – B3: Ernsthafte Erkrankung (Hospitalisierung) – B4: Todesfolge

COVID-19-Letalität und allgemeines Sterberisiko

Die Teilrisiken B3 und B4 ergeben zusammen das Sterberisiko bei einer vorliegenden COVID-19-Infektion, also die Letalität. In [5] sind diese Werte aus einer chinesischen Studie über mehr als 44.000 Infizierten direkt dokumentiert. Aus den Daten des RKI nach [1] und [2] lässt sich gleichfalls eine Letalität ableiten, die sich indes moderat von den Zahlenwerten nach [1] unterscheidet. In Abb. 1 (COVID-19-Letalität und allgemeines Sterberisiko) sind die erhaltenen altersgruppenspezifischen Letalitätswerte aufgetragen. Für mittlere und hohe Lebensalter ergeben sich vernachlässigbare Unterschiede zwischen den beiden Letalitätskurven. Bei den jüngeren Infizierten (25 Jahre) liegt die aus den Daten des RKI erhaltene Letalität nur bei 0,00045 (orangefarbene Kurve) im Vergleich zu 0,002 (rote Kurve). Das klingt nach einem großen Unterschied, indessen steht aber auch der höhere Letalitätswert für ein letzten Endes sehr geringes COVID-10-Sterberisiko von 1:500 bzw. 0,2% (bei dieser Altersgruppe).

Im Folgenden beziehen wir uns für Jüngere auf die pessimistischeren Werte nach [5] (gelbe Kurve mit gelben Kreisen) und passen die Letalitätswerte für Ältere in Richtung der ungünstigeren Werte des RKI an (grüne Kurve mit grünen Quadraten). Im Ergebnis erhalten wir den roten Graphen in Abb. 1. Angemerkt sei, dass durch die aktuellen Zahlen des RKI (s. Tab. 2) eine weiterhin stark zurückgehende Letalität dokumentiert wird. Im Sinne einer Negativabgrenzung bleiben wir dennoch bei den höheren Werten. Damit können wir sicherstellen, dass das tatsächlich bestehende Risiko eher noch kleiner ist, als das in der nachfolgenden Risikobetrachtung abgeleitete.

Abbildung 1: COVID-19-Letalität und allgemeines Sterberisiko. Dargestellt sind die altersgruppenspezifischen COVID-10-Sterberisiken bei nachgewiesener Infektion mit dem Corona-Virus, einmal abgeleitet aus den Daten des RKI ([1] und [2]), zum anderen übernommen aus einer chinesischen Studie [5]. Die rote Kurve steht für die im Text herangezogene COVID-19-Letalität. Das allgemeine Sterberisiko (ohne Corona) ist zum Vergleich aufgetragen.. Man beachte die logarithmische Skalierung.

Der besseren Übersichtlichkeit halber sind in Abb. 2 die beiden relevanten Kurven nochmals dargestellt.

Abbildung 2: COVID-19-Letalität und allgemeines Sterberisiko. Dargestellt sind das allgemeine Sterberisiko (ohne Corona) und das Sterberisiko bei einer bereits vorliegenden COVID-19-Infektion (Letalität). Man beachte die logarithmische Skalierung.

Vergleicht man nun die rote Kurve mit der blauen der grundsätzlich bestehenden allgemeinen Sterberisiken, so erkennt man, dass, wie nicht anders zu erwarten, das Sterberisiko durch eine vorliegende COVID-10-Infektion erhöht wird. Die Erhöhung ist nicht dramatisch, aber signifikant. Doch ist dieser direkte Vergleich überhaupt aussagefähig? Es wird hier ja unterstellt, man sei bereits mit dem Corona-Virus infiziert, was ja derzeit tatsächlich nur für etwa 0,3% der Bevölkerung zutrifft, akut sogar nur für ca. 0,015%. Für 99,7% besteht das Risiko in der Form nicht bzw. nur sehr indirekt über die Gefahr einer möglichen aber dennoch relativ unwahrscheinlichen Infektion.

Formale Risikobestimmung

Sehr viel sinnvoller ist die Betrachtung der gesamten Risikokette nach B1-B2-B3-B4, wie oben skizziert. Das Risiko B1 für den Kontakt mit einer akut ansteckenden Person hängt unmittelbar ab von der Kontakthäufigkeit. Wir variieren hierzu die Anzahl der Kontaktpersonen von 5 Personen pro Tag über 10, 20 und 50 Personen pro Tag und betrachten ein differenziertes Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90. Aus den Kontakthäufigkeiten können wir nun leicht die statistischen Wahrscheinlichkeiten für die Begegnung mit einer infektiösen Person errechnen und in der Folge die Infektionswahrscheinlichkeit B2 sowie das daraus abgeleitete Erkrankungsrisiko B3 (Hospitalisierung) und letztlich das Sterberisiko B4 bestimmen. Da wir insbesondere an Letzterem interessiert sind, berechnen wir das Sterberisiko mittels der Letalität direkt aus B2.

Der formelmäßige Zusammenhang ist wie folgt:

Sterberisiko B4 = Anzahl Kontakte pro Tag * Infektionsrisiko * Letalität

Nicht jeder Kontakt führt zu einer Infektion. Eine Ansteckung im Vorbeigehen ist sehr unwahrscheinlich. Wenn wir hier von Kontakten sprechen, dann meinen wir schon ein Minimum an Innehalten und beieinanderstehen. Zur Erinnerung: auch die Corona Warn-App dokumentiert nur Kontakte mit einer Verweildauer von mindestens 15 Minuten in weniger als 2 m Abstand. Das tatsächliche Ansteckungsrisiko bei einer normal-distanzierten Begegnung mit Fremden oder Bekannten pro individuellem Kontakt ohne Maske kann auf etwa p_K = 10% abgeschätzt werden, bei einem längeren oder sorgloserem Kontakt vielleicht p_K = 20%. Das Infektionsrisiko bestimmt sich daher zu

Infektionsrisiko = p_K * COVID-19-Infektiöse / Einwohnerzahl

Damit können wir nun die Sterberisiken für die unterschiedlichen Kontaktprofile leicht bestimmen.

Risikoanalyse in Abhängigkeit von der Kontakthäufigkeit

Für die genannten unterschiedlichen Kontaktprofile ist in Abb. 3 das resultierende spezifische Sterberisiko durch Corona dargestellt. Man erkennt, dass bei weniger als 20 Kontakten pro Tag das durch Corona zusätzlich entstehende Sterberisiko über alle betrachteten Altersgruppen hinweg kleiner ist, als das das allgemeine Grundrisiko bei Abwesenheit von Corona. Sogar bei 50 Kontakten pro Tag bleibt das Risiko für die Mehrheit der Altersgruppen unter dem allgemeinen Sterberisiko. Bei 5 Kontakten pro Tag liegt das Corona-Sterberisiko teilweise um eine Zehnerpotenz unter dem bestehenden allgemeinen Sterberisiko. Im Falle des als realitätsnah angesehenen Kontaktprofils (gepunktete orangefarbene Kurve) bleiben wir insbesondere für die Älteren teilweise um mehr als den Faktor 10 unter dem altersspezifischen Grundrisiko. Bei den 25-Jährigen liegen wir auf dem Niveau des allgemeinen Sterberisikos, dies ist indes von geringerer Bedeutung, da diese Altersgruppe ein sehr niedriges Grundrisiko aufweist. Dazu weiter unten mehr.

Anzumerken bleibt, dass wir bei den Gruppen der 25- und 40-Jährigen das Ansteckungsrisiko pro Kontakt auf p_K = 20% taxiert haben, bei allen anderen auf p_K = 10%. Für die von der Anzahl der Kontakte abhängige Bestimmung des Infektionsrisikos haben wir ferner die o.g. Eckdaten des RKI zugrunde gelegt, also aktuell 12682 COVID-19-Infektiöse bei 83. Mio. Einwohnern. Das entspricht einem pauschalen Infektionsrisiko von etwa 0,015% (= 1:6500) pro Kontakt mit sicherer Virusübertragung, bzw. 0,0015% (= 1:65000) pro Kontakt mit 10%-iger Übertragungswahrscheinlichkeit.

Abbildung 3: Spezifisches Sterberisiko durch Corona in Abhängigkeit vom Lebensalter. Man beachte die logarithmische Skalierung. Aufgetragen ist das spezifisch auf Corona zurückzuführende Sterberisiko bei unterschiedlichen Kontaktprofilen.

In Abb. 4 sind dieselben Risikoverläufe dargestellt, nun aber mit linearer statt logarithmischer Skalierung. Bis zum Alter von 50 liegen die Kurven alle so nah an der Nulllinie, dass die Unterschiede kaum erkennbar sind. Bei den Altersgruppen 70, 80 und 90 erkennt man aber unmittelbar, wie klein das durch Corona induzierte zusätzliche Sterberisiko im Vergleich zum altersbedingt bestehenden hohen Sterberisiko ohne Corona ist.

Abbildung 4: Spezifisches Sterberisiko durch Corona in Abhängigkeit vom Lebensalter. Aufgetragen ist das spezifisch auf Corona zurückzuführende Sterberisiko bei unterschiedlichen Kontaktprofilen. Im Unterschied zu Abb. 3 hier in linearer Skalierung.

Effektives Sterberisiko in der „Corona-Pandemie“

Wir haben hier nur das spezifisch durch Corona hinzu gekommene Risiko betrachtet. Natürlich will man auch wissen, wie sich das kumulierte Sterberisiko nun darstellt: Grundrisiko ohne Corona + zusätzliches Sterberisiko durch Corona. Die betreffenden Kurven für die unterschiedlichen Kontaktprofile sind in Abb. 5 dargestellt. Als Referenz ist die Kurve für die Sterbewahrscheinlichkeit ohne Corona ebenfalls mit aufgeführt (gestrichelte blaue Kurve). Wie kaum anders zu erwarten, führt das zusätzliche Risiko durch Corona im Wesentlichen zu einer Vertikalverschiebung der Sterberisikoverläufe nach Lebensalter, eine etwas größere Verschiebung bei der jüngeren Altersgruppe, eine etwas kleinere Verschiebung bei den höheren Lebensaltern.

Abbildung 5: Sterberisiko mit Corona in Abhängigkeit vom Lebensalter. Aufgetragen ist das resultierende Gesamt-Sterberisiko (Grundrisiko plus Zusatzeinfluss durch Corona) bei unterschiedlichen Kontaktprofilen. Man beachte die logarithmische Skalierung.

Man muss hier gar nicht ins Detail gehen, um zu erkennen, dass die resultierenden Sterberisiken unter Einbeziehung der Corona-Gefahr bei maximal 20 Kontakten pro Tag (grüne, gelbe, orangefarbene Kurven und die punktierte Linie) sich nur geringfügig vom bestehenden allgemeinen Sterberisiko abheben. Sogar bei 50 Kontakten pro Tag liegt die resultierende Kurve fast deckungsgleich auf dem Niveau der allgemeinen altersspezifischen Sterbewahrscheinlichkeiten, wie sie in [3] für Männer mit der Jahresreferenz 1986/88 ausgewiesen wird. Etwas flapsig könnte man also sagen, 50 sorglose Kontakte pro Tag sind im Hinblick auf das kumulierte Sterberisiko wie eine Zeitreise zurück in die 1980er Jahre. Das ist weitab von einem Katastrophenszenario.

Bei einem Minimum an vernünftigen Verhalten dürften für die meisten Menschen die Kontaktprofile mit 20 und weniger effektiv zu zählenden Kontakten machbar sein. Damit liegen wir beim resultierenden Sterberisiko durch Corona so nahe an der altersspezifischen Basissterbewahrscheinlichkeit (blaue Kurve), dass man schon in den Bereich der statistischen Unschärfe gerät. Linear interpoliert entspräche etwa die orangefarbene Kurve mit 20 Kontakten pro Tag der allgemeinen Sterbewahrscheinlichkeit für Männer (ohne Corona) um das Jahr 2000 (s. [3]).

Sterberisiko ohne und mit Corona im Vergleich

Im nachfolgenden Balkendiagramm (s. Abb. 6) sind die Sterbewahrscheinlichkeiten ohne und mit Corona nochmals sehr prägnant dargestellt.

Abbildung 6: Sterberisiko ohne und mit Corona in Abhängigkeit vom Lebensalter. Dargestellt sind das Grundrisiko ohne Corona (blau) und das Zusatzrisiko durch Corona (rot). Zugrunde gelegt ist das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90. Die Säulenhöhe markiert das resultierende Gesamtrisiko. Man beachte die logarithmische Skalierung.

Die blauen Balken zeigen das allgemeine Sterberisiko ohne Corona, die roten Balken darüber den offenbaren den zusätzlichen Einfluss durch die Corona Gefahr. Die Bezugsgröße ist hier das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90. Die Grafik spricht für sich!

Es fällt auf, dass die Corona-bedingten Zusatzrisiken bei den Jüngeren höher ausfallen als bei den Älteren. Ein deutlich gesteigertes zusätzliches Risiko bei der ersteren Altersgruppe, im Gegensatz dazu ein kaum sichtbares Corona-Zusatzrisiko bei den ganz Alten. Das scheint der beobachteten auffallend hohen COVID-19-Letalität bei Menschen über 60 zu widersprechen.

Wird das Sterberisiko durch Corona nennenswert erhöht?

Auf den ersten Blick vermeintlich noch unklarer wird die Situation, wenn wir direkt die altersgruppenspezifischen Erhöhungen im Sterberisiko miteinander vergleichen.

Wir werfen dazu einen Blick auf Abb. 7. Auf der linken Achse ist die prozentuale Erhöhung des Sterberisikos durch Corona aufgetragen. Sie gilt für die farbigen Kurven mit 5 bis 50 Kontakten pro Tag und das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90 (punktiert). Auf der rechten Achse kann man das Sterberisiko ohne Corona ablesen (blau gestrichelte Linie).

Ein Beispiel: Für die Altersgruppe 40 Jahre weist die grüne Kurve auf der linken Achse einen Wert von 16% auf. Demnach erhöht sich für 40-Jährige das allgemeine Sterberisiko mit durchschnittlich 5 Kontakten pro Tag durch Corona um 16% (also um den Faktor 1,16). Für 80-Jährige erhöht sich das Risiko indessen nur um etwa 6% (also um den Faktor 1,06), für 90-Jährige mit 2 Kontakten pro Tag gar nur um etwa 1% (orangefarbene, punktierte Linie) – das ist kaum messbar. Nochmals extremer wird der Unterschied, wenn man die Erhöhung des Sterberisikos durch Corona bei 25-Jährigen im differenzierten Kontaktprofil mit den Werten bei den 90-Jährigen vergleicht: Es sind 91% mehr im ersten Fall, aber nur 1,3% bei den ganz Alten. Wie kann es angesichts dessen zu der vielfach höheren Anzahl an COVID-19-Sterbefällen bei den Alten im Vergleich zu den Jüngeren kommen?

Bevor wir diese Frage beantworten, wollen wir die Prozentangaben im Hinblick auf das Sterberisiko kurz einordnen. Es ist mittlerweile Allgemeinwissen, dass Bewegung der Gesundheit zuträglich ist, das ist durch zahlreiche Studien belegt. Teilweise werden bereits für moderat intensive Alltagsbewegung eine Reduzierung des Sterberisikos von 19 % und bei höher intensivem Ausdauertraining und Sport von 39 % genannt (s. [12]). Schon damit wird klar: Die abgeleiteten höheren Sterberisiken durch Corona bewegen sich im Bereich von Individualentscheidungen der eigenen Lebensführung. Ähnliches kann man natürlich auch von gesunder Ernährung und dem Verzicht auf potentiell krankmachende Genussmittel (Tabak, Alkohol, Zucker) oder eben deren bewusstem Genuss sagen.

Abbildung 7: Erhöhung des Sterberisikos durch Corona in Abhängigkeit vom Lebensalter. Die farbigen Kurven mit 5 bis 50 Kontakten pro Tag und das differenzierte Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90 (punktiert) zeigen auf der linken Achse die prozentuale Erhöhung des Sterberisikos im entsprechenden Lebensalter an. Das bestehende Grundrisiko ohne Corona wird mittels der blau-gestrichelten Kurve dargestellt (rechte Achse). Man beachte die logarithmische Skalierung in beiden Achsen.

Größere relative Risikosteigerung durch Corona bei den Jungen als bei den Alten

Es besteht nur scheinbar ein Widerspruch, den wir im Folgenden aufklären.

Wie man Abb. 6 entnehmen kann, hat die Altersgruppe der25-Jährigen statistisch gesehen auch inklusive des Corona-bedingten zusätzlichen Sterberisikos immer noch eine vielfach höhere Überlebenswahrscheinlichkeit (ca. 65-fach) im Vergleich zur Gruppe der 80-Jährigen (man beachte die logarithmische Skalierung). Verglichen mit den 90-Jährigen ist dieser Wert gar um den Faktor 210 höher. Das bleibt bezüglich der tatsächlichen Sterbezahlen natürlich nicht ohne Folge und erklärt die vermeintliche Unstimmigkeit.

In [6] sind u.a. die Todesraten für die Gruppe der 20-29-Jährigen und die Gruppe der 80-89-Jährigen dokumentiert. Den 8 COVID-19-Toten im Alter zwischen 20 und 30 stehen 3704 COVID-19-Sterbefälle im Alter zwischen 80 und 90 gegenüber, das sind 463-mal so viele.

Um die Auflösung des Widerspruchs an einem Beispiel plausibel zu machen: Nehmen wir zwei Trinkbecher. Den ersten machen wir halbvoll mit Wasser, den zweiten füllen wir bis knapp unter den Rand. In beiden Bechern markieren wir den Füllstand. Nun lassen wir aus geringer Höhe einen Kieselstein in den ersten Becher fallen. Was beobachten wir? Das Wasser gerät in Wallung und schwappt hoch, bleibt aber unterhalb des Becherrands. Nur einige weniger Spritzer gehen darüber hinaus. Wir nehmen den Kieselstein heraus und betrachten den Füllstand im ersten Becher: keine merkliche Veränderung.

Kommen wir zum zweiten Becher. Aus der gleichen Höhe wie zuvor lassen wir den Kieselstein in den Becher fallen. Was passiert? Wieder kommt das Wasser in Wallung. Weil aber der Füllstand sehr hoch ist, schwappt nun einiges vom Inhalt über den Rand hinaus. Wenn wir den Stein herausnehmen, sehen wir, dass die Füllmenge im zweiten Becher deutlich sichtbar unterhalb der Füllstandmarkierung liegt.

In beiden Fällen war die äußere Anregung dieselbe, in Relation zum Inhalt war die Einwirkung beim ersten Becher sogar doppelt so stark. Trotzdem konstatieren wir im Ergebnis einen signifikanten Unterschied zu Ungunsten der Situation beim zweiten Becher mit der in Relation nur halb so starken äußeren Einwirkung.

Die wenigen Wasserspritzer aus dem ersten Becher stehen für die sehr niedrigen COVID-19-Todesraten bei den 20-29-Jährigen. Der viel höhere Verlust an Füllmenge im zweiten Becher entspricht der im Vergleich so überaus beträchtlicheren relativen und absoluten COVID-19-Sterblichkeit bei den über 80-Jährigen.

Was man der oben zitierten Sterbegrafik in [6] übrigens auch entnehmen kann: Nur etwa 0,2% aller Todesfälle bei den 20-29-Jährigen und etwa 1% bei den 80-89-Jährigen gehen tatsächlich auf COVID-19 zurück. Nach wie vor sind also die „allgemeinen Sterberisiken“ in einer angesichts der vorherrschenden Pandemie-Stimmung fast surreal anmutenden Weise dominant gegenüber der von COVID-19 ausgehenden Gefahr. Sogar in der Altersgruppe der besonders gefährdeten über 80-Jährigen sterben unglaubliche 99% aufgrund von anderen Todesursachen.

Resümee

Aus den vorliegenden Daten zu den Fallzahlen der mit dem Corona-Virus Infizierten, der Genesenen und den COVID-19-Todesfällen haben wir durch Vergleich mit den altersspezifischen Sterbewahrscheinlichkeiten aus der Vor-Corona-Zeit das vom Virus ausgehende tatsächliche Risiko bestimmt. Es zeigt sich, dass dieses Zusatzrisiko relativ gering ist und sich einordnet in die Höhe der individuellen Lebensrisiken aufgrund persönlicher Entscheidungen zur Lebensführung (z.B. betreffend Gesundheitsvorsorge, Ernährung und Sport).

Tatsächlich sind Herz-Kreislaufversagen mit 36% aller Fälle und Krebs mit 25% die häufigsten Todesursachen, mehr als eine halbe Million sterben jedes Jahr daran. Sogar Stürze (16.201 in 2018) liegen mit einem Anteil von 1,7% aller Todesursachen noch klar über der Anzahl der COVID-19-Todesfälle. Hat man deswegen schon erwägt, Haushaltsleitern zu verbieten? Die Anzahl der Suizide ist in etwa auf dem Niveau der durch Corona bedingten Todesfälle.

Fakt ist: Nur etwa 0,2% aller Todesfälle bei den 20-29-Jährigen und etwa 1% bei den 80-89-Jährigen gehen tatsächlich auf COVID-19 zurück. Das steht im Einklang mit dem abgeschätzten COVID-19-Sterberisiko als Endprodukt der Kette „Kontakt mit akut ansteckenden Infizierten“ – „Infektion“ – „Ernsthafte Erkrankung (Hospitalisierung)“ – „Tod“. Unter Zugrundelegung eines differenzierten Kontaktprofil mit 20, 10, 10, 10, 5, 3 bzw. 2 Kontakten pro Tag bei den unterschiedlichen Lebensaltern 25, 40, 50, 60, 70, 80 bzw. 90 hatten wir für die Gruppe der Jüngeren (25 Jahre) ein Zusatzrisiko von 20 % erhalten, was hier allerdings nicht durchschlägt, weil das Sterberisiko von 25-Jährigen per se vernachlässigbar ist (s. o.). Bei den sehr Alten (über 80) liegt das Zusatzrisiko nur bei 1 – 4 %. Das tagesbezogene Sterberisiko vergrößert sich hier für die 80-Jährigen von 1:6083 auf 1:5871 und für die 90-Jährigen von 1:1825 auf 1:1802 – das sind kaum wirklich nennenswerte Unterschiede.

Der Anteil der positiv Getesteten liegt derzeit unter 1% mit weiter sinkender Tendenz. Die Zahl der COVID-19-Todesfälle stagniert. Die effektive Todesrate ist seit dem Höhepunkt im April mit 7% auf weniger als 1% gefallen, und sie sinkt weiter, teilweise auf 0,5%.

Es erscheint völlig klar, dass diese Zahlen eine weitere Beeinträchtigung des öffentlichen Lebens und der Wirtschaft in der bisherigen Form in keiner Weise rechtfertigen. Man muss vielmehr genau hinschauen, welche Verbote überhaupt noch ihren Sinn erfüllen. Das gilt sicher für Massenveranstaltungen mit wahllosen und engen Kontakten. Nahezu alles andere muss aber auf den Prüfstand. Das heißt nicht, die Corona-Gefahr zu leugnen, es heißt vielmehr, der tatsächlichen bestehenden Gefahr mit Vernunft und Augenmaß zu begegnen. Gutmeinend erlassene Verbote helfen da nicht weiter, schon gar nicht Denkverbote.

Das Gerede von der Corona-Pandemie „als der größten Herausforderung seit dem zweiten Weltkrieg“ ist grob fahrlässig und hat im Ergebnis einen beträchtlichen Schaden in nahezu allen Lebensbereichen angerichtet. Diese Aussage ist ein politischer Kakophemismus, der durch die Fakten nicht ansatzweise gedeckt wird. Sogar auf dem Höhepunkt der sogenannten ersten Welle waren die Intensivbettkapazitäten in Deutschland nur zu etwa 6% ausgelastet. Vermutlich sind viele an anderen Krankheiten gestorben, weil die Bettenkapazitäten für potentielle COVID-19-Patienten reserviert worden waren (mussten). Von den wirtschaftlichen Auswirkungen und mittelbaren Kollateralschäden ganz zu schweigen.

Quellen

[1] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 24. August 2020). Statista

[2] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 24. August 2020). Statista

[3] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

[4] Altersspezifische Sterbewahrscheinlichkeiten der Frauen in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

[5] Sterblichkeitsrate nach Risikogruppen – Für wen ist das Coronavirus besonders gefährlich? RTL.de, 08. Juni 2020

[6] Altersabhängigkeit der Todesraten im Zusammenhang mit COVID-19 in Deutschland. Dtsch Arztebl Int 2020; 117: 432-3; DOI: 10.3238/arztebl.2020.0432

(Grafik 1: https://www.aerzteblatt.de/callback/image.asp?id=107167, Grafik 2: https://www.aerzteblatt.de/callback/image.asp?id=107168)

[7] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 17.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

[8] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) 18.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

[9] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) 19.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

[10] Todesursachen – Zahl der Todesfälle. Statistisches Bundesamt

[11] Verteilung der häufigsten Todesursachen in Deutschland im Jahr 2018. Statista

[12] Bewegung senkt Sterberisiko um bis zu 40 Prozent. Universität Wien, 2011

Anhang

Begründung für die Annahme der Unabhängigkeit des effektiven COVID-19-Erkrankungs- und Sterberisikos von der Dunkelziffer bezüglich der Anzahl der Infizierten

Das Infektionsrisiko wird direkt durch der Anzahl der akut Infizierten determiniert. Die Dunkelziffer bezüglich der Anzahl der Infizierten führt daher unmittelbar zu einem entsprechenden Fehler bei der Bestimmung des Risikos. Das pauschale Infektionsrisiko wird nach der Formel

Infektionsrisiko = COVID-19-Infektiöse / Einwohnerzahl

berechnet. Doppelte Anzahl an Infizierten, heißt also auch doppeltes Infektionsrisiko.

Infektionsrisiko_RKI sei das Infektionsrisiko ohne Dunkelziffer, Infektionsrisiko_eff das effektive Infektionsrisiko inklusive der als bekannt gedachten Dunkelziffer.

Bekanntlich hat nicht jeder Infizierte wirklich ernsthafte Symptome. Nach den letzten Zahlen des RKI sind derzeit (KW 30 in 2020 und später), quer über alle Altersklassen maximal 10% der dokumentierten Infizierten hospitalisiert, also so krank, dass sie stationär behandelt werden müssen. Noch im April waren es 20% (s. Tabelle 2). Wir dürfen davon ausgehen, dass nahezu alle ernsthaft an COVID-19 Erkrankten in der Statistik erfasst werden. Demnach ist also die (absolute) Anzahl der COVID-19-Erkrankten vertrauenswürdig, nicht aber der (relative) Hospitalisierungsgrad, wie er vom RKI ausgewiesen wird.

Dazu folgende Überlegung:

COVID-19-Hospitalisierungsgrad_RKI = COVID-19-Erkrankte / COVID-19-Infizierte

Der Zähler ist verlässlich und fix, der Nenner stark mit Unsicherheit behaftet. Doppelt so viele Infizierte (Dunkelziffer), heißt daher halber Hospitalisierungsgrad.

Für Gesunde bleibt demnach das tatsächliche COVID-19-Erkrankungsrisiko unabhängig von der Unschärfe bezüglich der Anzahl der Infizierten. Bei der doppelten Anzahl an Infizierten aufgrund einer möglichen Dunkelziffer, verdoppelt sich zwar das effektive Infektionsrisiko, das wird aber kompensiert durch den in entsprechendem Maße halbierten effektiven Hospitalisierungsgrad, denn die absolute Anzahl der Hospitalisierten liegt fest:

Infektionsrisiko_eff * COVID-19-Hospitalisierungsgrad_eff = Infektionsrisiko_RKI * COVID-19-Hospitalisierungsgrad_RKI

Ähnlich verhält es sich mit dem COVID-19-Sterberisiko. Das vom RKI ausgewiesene spezifische COVID-19-Sterberisiko (Letalität) liegt seit Mitte des Jahres bei unter 1% mit weiter sinkender Tendenz (s. Tabelle 2). Es ist wie folgt definiert:

COVID-19-Sterberisiko = COVID-19-Todesfälle / COVID-19-Infizierte

(jeweils bezogen auf gleiche Zeitabschnitte).

Auch hier dürfen wir wieder davon ausgehen, dass die validen COVID-19 Todesfälle nahezu vollständig in der Statistik des RKI dokumentiert sind. Für Gesunde bleibt daher das effektive COVID-19-Sterberisiko unbeeinflusst von der Unsicherheit bezüglich der Dunkelziffer betreffend der Infizierten. Bei der im Beispiel doppelten Anzahl an Infizierten, verdoppelt sich das Infektionsrisiko. Das wird kompensiert durch das dann in gleichem Maße halbierte effektive COVID-19-Sterberisiko, denn die absolute Anzahl der Sterbefälle liegt fest:

Infektionsrisiko_eff * COVID-19-Sterberisiko_eff = Infektionsrisiko_RKI * COVID-19-Sterberisiko_RKI

Insgesamt dürfen wir daher sowohl beim Erkrankungsrisiko (Hospitalisierungsgrad) als auch beim Sterberisiko (Letalität) die absoluten Zahlen des RKI unmittelbar verwenden. Gleichviel, wie hoch die Anzahl der COVID-19-Infizierten tatsächlich ist (Dunkelziffer) und wie viele Falsch-Positive darunter auch sein mögen: bezogen auf das Erkrankungs- und Sterberisiko für die Gesamtpopulation ändert sich dadurch nichts. Entscheidend für das effektiv bestehende Risiko sind ausschließlich die absoluten Zahlen betreffend der Hospitalisierung und der spezifischen COVID-19-Todesfälle.

Gefahr Corona Virus – Wie groß ist das Risiko wirklich?

Nackte Zahlen sagen nicht alles

Täglich werden vom Robert-Koch-Institut (RKI) die neuen Corona-Fallzahlen verkündet und auf die vom Corona Virus ausgehende Gefahr hingewiesen. Drei Zahlenwerte werden dabei vor allem genannt: 1. Die Anzahl der COVID-19 Fälle insgesamt. 2. Die kumulierten COVID-19 Todesfälle. 3. Die Anzahl der von COVID-19 Genesenen. Per 17.08.2020 sind das die folgenden Fallzahlen:

  • COVID-19-Fälle insgesamt = 224014
  • COVID-19-Todesfälle insgesamt= 9232
  • COVID-19-Genesene insgesamt = 202100

Die ganz wichtige weitere Zahl wird – aus welchen Gründen auch immer – nicht genannt. Es ist die Anzahl der aktuell Infektiösen, also die der tatsächlich ansteckenden Personen. Man kann diese Zahl leicht aus den obigen Werten berechnen.

  • COVID-19-Infektiöse = COVID-19-Fälle – COVID-19-Genesene – COVID-19-Todesfälle

Aktuell (per 17.08.2020) beläuft sich die Anzahl der akut ansteckenden Personen (COVID-19-Infektiöse) auf 12682.

Bei Lichte betrachtet ist es nur die letztgenannte Zahl, von der eine Gefahr für die weitere Verbreitung des Corona-Virus ausgeht, denn anstecken kann man sich nur bei akut infizierten Personen. Was heißt dabei „akut infiziert“? Nach mehrfach bestätigten Studien besteht nur innerhalb der ersten 7 – 14 Tage nach der Infektion eine Ansteckungsgefahr. Wenn Sie also jemand treffen, der vor 3 Wochen positiv getestet wurde und keine Symptome zeigt, brauchen Sie sich keine Gedanken um Ihre Gesundheit zu machen.

Die Zahlen richtig interpretieren und kühlen Kopf bewahren

In Presse Funk und Fernsehen wird teilweise in unverantwortlicher Weise Panik geschürt. Im Ergebnis überschätzen die Menschen das Risiko für eine ernsthafte Erkrankung an COVID-19 um Größenordnungen. Einer der Gründe dafür ist die wenig differenzierte Berichterstattung des RKI. Die absoluten Zahlen von sogenanntem Neuinfizierten zu nennen, ist zweifellos eine wichtige Information, sie sagt aber nicht alles aus. Vor allem muss diese Zahl auch in Bezug gesetzt werden zu den insgesamt vorgenommenen Tests. Aktuell werden pro Woche mehr als 500000 Tests durchgeführt. Positiv sind weniger als 1% (KW 29: 0,6%, KW 30: 0,8%) davon. Zum Vergleich: Im April waren teilweise 9% der Tests positiv. Man sieht schon daran: Es ist fahrlässig, angesichts dieser Zahlen von einer zweiten Welle zu reden.

Dabei muss man auch sehen, dass die Falsch-Positiv-Rate bei den Tests nicht vernachlässigbar ist. Man kann abschätzen, dass bei Anwendung des RT-PCR-Tests auf eine Gruppe mit niedriger Infektionswahrscheinlichkeit (was für die Allgemeinheit nach wie vor zutreffen dürfte) teilweise bis zu 60% der positiv Getesteten tatsächlich gar keine Virenträger sind (Basis: Testsensitivität 70%, Testspezifität 95%, Prävalenz 5%). Immerhin kann man einem negativen Testat vertrauen: 98% der negativ Getesteten sind tatsächlich negativ.

Das Bild dreht sich um, wenn Risikogruppen mit einer hohen Prävalenz (Prätest-Infektionswahrscheinlichkeit) getestet werden. In diesem Fall sind nur 7% der positiv Getesteten in Wahrheit negativ. Umgekehrt tragen dann allerdings 24% der negativ Getesteten das Virus in sich, sind also positiv (Basis: Testsensitivität 70%, Testspezifität 95%, Prävalenz 50%).

Nach dem Vorstehenden kann man festhalten, dass die Aufregung um gegebenenfalls steigende Infektionszahlen verfrüht ist, solange die Testergebnisse nicht durch mindestens einen weiteren Test bestätigt werden. Denn die Unsicherheit singulärer RT-PCR-Tests bei Anwendung auf Niedrigrisikogruppen ist hoch. – Könnte denn eine Blitzampel mit einer Fehlerquote von 60% rechtssichere Bußgeldbescheide begründen?

Wir haben oben gesehen, dass derzeit weniger als 1% der Testergebnisse positiv ausfallen. Bei aller Unsicherheit bezüglich der Testaussagen sieht man schon daran: Das Risiko, sich mit dem Corona-Virus zu infizieren ist bei Weitem nicht so hoch, wie dies die teilweise alarmistische Berichterstattung nahelegt.

Auch wenn man sich infiziert hat: Leichte Befunde und Krankheitsverläufe sind die Regel. In 80% der Fälle haben die Infizierten keine oder nur milde Symptome. Damit soll die Gefahr nicht verharmlost werden, denn natürlich gibt es auch die schweren Verläufe, die insbesondere Menschen mit Vorerkrankungen treffen. Immerhin jeder 6. bis 7. Betroffene muss stationär behandelt werden.

Unterstellt, die Anzahl der insgesamt Infizierten (COVID-19-Fälle insgesamt) spiegele die Realität vollständig wider, es gebe also keine Dunkelziffer, liegt die dokumentierte Letalität (Sterblichkeit) deutschlandweit bei etwa 4 bis 5%. Der Vollständigkeit halber sei hier angemerkt, dass in einer räumlich begrenzten Studie auf der Basis eines vollständigen Screenings eine deutlich niedrigere Letalität von unter 0,4% bestimmt wurde. Der Grund dafür ist die potentiell hohe Dunkelziffer unerkannt Infizierter. Inwiefern dieser niedrigere Wert auf die größere Population in Deutschland übertragbar ist, kann derzeit nicht gesagt werden. In Unkenntnis der Dunkelziffer an Infizierten muss man sich seriöser Weise am höheren Wert orientieren.

Wie groß ist das Risiko für das Individuum wirklich?

Angesichts der sich teilweise überschlagenden und dabei auch widersprüchlichen Medienberichterstattung, fällt es dem Einzelnen schwer, die tatsächlich vom Corona-Virus ausgehende Gefahr realistisch einzuschätzen und sein eigenes Risiko zu veranschlagen. Dabei kann dieses Risiko relativ einfach aus den vom RKI übermittelten Zahlen bestimmt werden.

Wir haben oben gesehen, dass es derzeit 12682 akut ansteckende Personen (COVID-19-Infektiöse) gibt. Deutschland hat etwa 83 Mio. Einwohner. Demnach beläuft sich der Anteil der infektiösen Mitbürger auf 0,0153%, d.h., etwa 1 von 6544 Menschen ist akut ansteckend.

Was heißt das?

Jemand der täglich mit 65 unterschiedlichen Personen Kontakt hat, wird im Mittel alle 100 Tage auf einen an COVID-19 erkrankten und akut infektiösen Menschen treffen. Wer nur mit max. 18 Personen pro Tag Kontakt hat, wird statistisch nur einmal im Jahr in die Nähe eines akut Infizierten kommen.

Natürlich geht es hier um Mittelwerte. Wer in einem Landkreis oder einer Stadt mit höherer Dichte an akut Infizierten lebt, wird mit höherer Wahrscheinlichkeit bzw. häufiger mit ansteckenden Personen in Kontakt kommen. Nehmen wir Hamburg: Der Anteil der akut Infektiösen liegt dort bei 0,022%. Wer täglich mit 18 unterschiedlichen Personen in Kontakt kommt, wird also im Mittel etwa alle 8 Monate einem konkreten Infektionsrisiko ausgesetzt sein.

Das gleiche gilt natürlich auch umgekehrt. In Mecklenburg-Vorpommern (das Bundesland mit den niedrigsten Infektionszahlen) ist der Anteil der akut Infektiösen mit einem Wert von 0,0033% fast 5-mal geringer als im deutschlandweiten Schnitt. Wer dort 18 Personen pro Tag nahe kommt, wird im Mittel nur alle 4 bis 5 Jahre auf einen Infizierten treffen.

Auch wenn man mit einem Infektiösen Kontakt hat, heißt dies noch nicht, dass man sich auch selbst infiziert. Das konkrete Risiko hängt von vielen Faktoren ab. Relevant sind auf jeden Fall die Nähe, die Intensität und die Dauer des Kontakts. Schon einfache Vorsichtsmaßnahmen sind geeignet, das Ansteckungsrisiko deutlich zu reduzieren. Bei einem normal-distanzierten Kontakt unter Fremden oder entfernt Bekannten (kurzes Gespräch) liegt das Risiko vermutlich auch ohne Maske unter 10%. Mit Maske vielleicht bei 1%. Enger und langanhaltender Kontakt unter Freunden („Party mit Saufgelage“) hebt das Risiko mit einiger Sicherheit in Richtung 100%. Nach diesen Vorüberlegungen wollen wir nun das individuelle tägliche COVID-19-Krankheitsrisiko für drei Musterpersonen auf Grundlage der mittleren deutschlandweiten Infektionsgeschehens abschätzen. Wir verwenden dabei die folgenden Eckwerte:

  • Tatsächliches Ansteckungsrisiko bei einer normal-distanzierten Begegnung mit Fremden oder Bekannten pro individuellem Kontakt ohne Maske 10%.
  • Tatsächliches Ansteckungsrisiko bei einer sehr sorglosen oder länger andauernden Begegnung mit Fremden oder Bekannten pro individuellem Kontakt ohne Maske 50%.
  • Tatsächliches Risiko für einen ernsteren Verlauf bei nachgewiesener Infektion (Ausbruch der Krankheit und stationäre Behandlung) 20%.
  • Tatsächliches Sterberisiko bei stationärer Behandlung 25%, (entsprechend einer Letalität von 5% bei nachgewiesener Infektion).

Person A: 1x pro Woche im Supermarkt (20 Personen), 1x pro Woche im Restaurant (5 Personen), 1x Treffen mit Bekannten oder Familienangehörigen (10 Personen). A hat im Mittel Kontakt mit 5 Personen pro Tag.

A ist vernünftig und bleibt im Kontakt ohne Maske lieber etwas reservierter (Ansteckungsrisiko pro Kontakt 10%). Das individuelle tägliche Infektionsrisiko von A liegt demnach bei ca. 1:1300 (= 5*0,000153), sein Erkrankungsrisiko (A infiziert sich tatsächlich) bei 1:13000 (= 0,1*5*0,000153). Das individuelle tägliche Risiko für einen ernsteren Verlauf eines potentiellen Krankheitsgeschehens bei A kommt damit auf 1:65000 (= 0,2*0,1*5*0,000153), sein tägliches Corona-Sterberisiko beläuft sich demnach auf 1:260000 (= 0,00038% = 0,25*0,2*0,1*5*0,000153).

Um das richtig einzuschätzen: Werfen Sie 18-mal hintereinander eine Münze. Wiederholen Sie diesen Prozess jeden Tag aufs Neue, immer wieder. An dem Tag, an welchem 18-mal hintereinander Zahl fällt, ist Person A tot und an COVID-19 verstorben.

Übrigens, das statistische tägliche Sterberisiko für einen 80-jährigen Mann liegt auch ohne Corona schon bei 1:5200 (= 0,019%), mithin also etwa 50-mal höher als das spezifische Risiko durch Corona. Wobei dieser Vergleich insofern schief ist, als dass das individuelle COVID-19-Risiko für einen schweren Krankheitsverlauf bei einem 80-Jährigen gegenüber Personen mittleren Alters per se deutlich erhöht ist. Vergleichen wir also das berechnete COVID-19-Sterberisiko für Person A mit dem allgemeinen Sterberisiko für einen Menschen mittleren Alters.

Für 50-Jährige liegt das tägliche Sterberisiko bei etwa 1:120000 (= 0,00082%). Das für Person A zusätzlich entstehende Risiko durch Corona liegt demnach etwa halb so hoch. D.h., Corona erhöht das tägliche Sterberisiko für Person A von 0,00082% auf 0,0012%. Etwas Bewegung an frischer Luft oder die Reduktion des Fleischkonsums um wenige Prozent dürfte diese Risikoerhöhung locker kompensieren, denn nach wie vor sind Herz-Kreislauferkrankungen aufgrund mangelnder Bewegung und falscher Ernährung die Haupttodesursachen.

Person B: 1x pro Woche im Supermarkt (20 Personen), 3 Tage Heimarbeit (0 Personen), 2 Tage in der Firma (10 Personen) 2x Essen in der Kantine (20 Personen), 1x Treffen mit Bekannten oder Familienangehörigen (20 Personen). B hat im Mittel Kontakt mit 10 Personen pro Tag.

B ist vernünftig und bleibt im Kontakt ohne Maske lieber etwas reservierter (Ansteckungsrisiko pro Kontakt 10%). Das individuelle tägliche Infektionsrisiko von B liegt demnach bei ca. 1:650 (= 10*0,000153), sein Erkrankungsrisiko (B infiziert sich tatsächlich) beträgt also 1:6500 (= 0,1*10*0,000153). Das individuelle tägliche Risiko für einen ernsteren Verlauf eines potentiellen Krankheitsgeschehens bei B errechnet sich damit zu 1:32500 (= 0,2*0,1*10*0,000153), sein tägliches Corona-Sterberisiko beläuft sich demzufolge auf 1:130000 (= 0,00077% = 0,25*0,2*0,1*10*0,000153).

Unterstellt, B habe mittleres Alter, erhöht sich sein allgemeines tägliches Sterberisiko pauschal von 0,00082% auf knapp 0,0016%. Auch das ist leicht auszugleichen durch ein Minimum an gesünderer Ernährung und Sport. Übrigens, das Risiko im Straßenverkehr ums Leben zu kommen liegt für Personen mit einer durchschnittlichen jährlichen Fahrleistung von 15000 km bei etwa 0,0075% pro Jahr.

Person C: 2x pro Woche im Supermarkt (20 Personen), 5 Tage in der Firma (50 Personen), am Wochenende Party oder Disco (50 Personen). C hat im Mittel Kontakt mit 20 Personen pro Tag.

C ist unvernünftig und schert sich um nichts (Ansteckungsrisiko pro Kontakt 50%). Das individuelle tägliche Infektionsrisiko von C liegt demnach bei ca. 1:325 (= 20*0,000153), sein Erkrankungsrisiko (C infiziert sich tatsächlich) bei 1:653 (= 0,5*20*0,000153). Das individuelle tägliche Risiko für einen ernsteren Verlauf eines potentiellen Krankheitsgeschehens bei C kann somit auf 1:3267 (= 0,2*0,5*20*0,000153) abgeschätzt werden. Sein pauschales tägliches Corona-Sterberisiko errechnet sich daraus zu 1:13000 (= 0,0077% = 0,25*0,2*0,5*20*0,000153).

Unterstellt, C gehöre der jüngeren Generation an (20-30 Jahre), erhöht sich sein allgemeines tägliches Sterberisiko pauschal von 0,000137% auf knapp 0,0078%. Das ist nun schon eine signifikante Steigerung, eine fast 60-fach erhöhte Sterbewahrscheinlichkeit! Allerdings: Hier bleibt unberücksichtigt, dass Jüngere ein deutlich reduziertes Risiko für einen schweren COVID-19-Krankheitsverlauf mit stationärer Behandlung und Todesfolge haben. Stellt man dies mit einer Hospitalität von 10% statt 20% und einem Sterberisiko bei stationärer Behandlung von 5% (entsprechend einer Letalität von 0,5%) statt 25% in Rechnung, so kommt man beim individuellen täglichen Corona-Sterberisiko für C auf 1:130000 (= 0,00077% = 0,05*0,1*0,5*20*0,000153). Das ist derselbe Wert, wie bei Person B.

Resümee

Natürlich muss jeder für sich selbst bewerten, inwiefern die hier exemplarisch bestimmten Corona-Risiken individuell als bedrohlich oder als eher niedrig angesehen werden. Nach meiner persönlichen Einschätzung sind die Risiken für Gesunde in der Gesamtschau und verglichen mit anderen Lebensrisiken nicht ungewöhnlich hoch. Anders mag es aussehen für Menschen mit Vorerkrankungen und insbesondere für Ältere mit Vorerkrankungen. Diese Gruppe hat grundsätzlich ein höheres Sterberisiko, das nun durch Corona noch weiter erhöht wird.

Gewiss ist das Verbot von Massenveranstaltungen nach wie vor sinnvoll. Wahllose und fahrlässig enge Kontakte mit Fremden sollte man fraglos vermeiden. Umgekehrt muss man gefährdete Personen aktiv schützen, dabei ist auch das Tragen einer Maske in Situationen mit einem unvermeidlichen engeren Kontakt grundsätzlich sinnvoll. Ansonsten darf man die Kirche im Dorf lassen und zu einer vernünftigen Normalität zurückkehren.

Quellen:

[1] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 17.08.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. Robert-Koch-Institut

[2] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

[3] Sterblichkeitsrate nach Risikogruppen – Für wen ist das Coronavirus besonders gefährlich? RTL.de, 08. Juni 2020

[4] Altersabhängigkeit der Todesraten im Zusammenhang mit COVID-19 in Deutschland. Dtsch Arztebl Int 2020; 117: 432-3; DOI: 10.3238/arztebl.2020.0432

Nach der Ausnahme kommt die Normalität

Ausgangsbeschränkungen können wirken

Die getroffenen Maßnahmen zur Eindämmung der weiteren schnellen Ausbreitung des Coronavirus sind grundsätzlich sinnvoll. Entscheidend ist: Zunächst müssen wir die verfügten Verhaltensregeln konsequent einhalten und die Einschränkungen geduldig hinnehmen. Nur so kann eine Wirkung erzielt werden (s. a. Coronavirus – Schluss mit lustig). Offenbar sieht das die Mehrzahl der Menschen gleichfalls so. Noch ist das so richtig, muss man einschränken, doch darf der Übergang in die Normalität nicht beliebig in die Zukunft verschoben werden (s. a. Sehnsucht nach Normalität).

Nur um die Zahlen in die richtige Relation zu bringen: Derzeit sind in Deutschland ca. 0,1% der Bevölkerung mit dem Coronavirus infiziert. Von der Dunkelziffer wissen wir natürlich nichts genaues. Dennoch gibt es (noch) keinen Grund zur Panik! Das befürchtete schnelle exponentielle Wachstum der Infektionszahlen kann durch die verfügten Ausgangsbeschränkungen wirksam bekämpft werden (s. Coronavirus – Schluss mit lustig). Im besten Falle gelingt es so, die Zahl der Neuinfektionen in einem unkritischen Bereich zu halten (s. Das Coronavirus – So schnell breitet es sich aus).

Auswirkungen auf die Wirtschaft

Allerdings haben die Ausgangsbeschränkungen auch eine Kehrseite. Das öffentliche Leben kommt zum Stillstand. Die Wirtschaft leidet schon jetzt erheblich. Bei einer längeren Dauer würde sie schwer in Mitleidenschaft gezogen. Der Schaden wäre immens. Es geht dabei nicht nur um schnöden Mammon, etwa die ausbleibenden Gewinne von Konzernen. Weit gefehlt, es ist viel dramatischer. Die nackte Existenz von kleinen und größeren Unternehmen, Gewerbetreibenden und Selbständigen steht auf dem Spiel. Und schon bald wären die Beschäftigten mit ihren Familien unmittelbar davon betroffen, mit allen Konsequenzen für ihre Lebensgestaltung. Bereits binnen weniger Monate wäre der Niedergang für Hunderttausende, wenn nicht Millionen mit schwerwiegenden Einbußen bis hin zu Existenzverlusten verbunden.

Der Stillstand darf nur von kurzer Dauer sein

Die aus den jetzigen Maßnahmen resultierenden unmittelbaren Folgenwirkungen sind daher nur für eine eng begrenzte Zeitspanne von vielleicht maximal 4 – 6 Wochen akzeptabel. Spätestens ab Mai muss man zu einer gewissen Normalität mit verkraftbaren Einschränkungen zurückkehren und (je nach Stand der Dinge) andere Maßnahmen ergreifen, sonst ist der Schaden größer als der Nutzen und es droht langfristig die Erkenntnis: „Operation Gesundheitswesen gelungen, Patient Wirtschaft tot“. Oder so:

Leben temporär gerettet, Existenzen dauerhaft vernichtet.

Mit anderen Worten: Ausnahmen sind nur ausnahmsweise akzeptabel. Freies und selbstbstimmtes Leben und Wirtschaften ist nur in der Normalität möglich.

Es geht ums Ganze, nicht nur um das Gesundheitswesen

Die Aufrechterhaltung der Funktionsfähigkeit des Gesundheitssystems ist ein wichtiges Ziel. Es darf aber nicht getrennt von den gravierenden Nebenwirkungen verfolgt werden. Trotz der Gefährlichkeit des Coronavirus ist die Bekämpfung der Pandemie letztlich keine wissenschaftliche Frage, die Virologen beantworten können. Es ist vielmehr eine Herausforderung an die politische Bewertung. Wissenschaftler, auch Virologen, haben hierbei eine Stimme, mehr aber auch nicht. Letzten Endes müssen die verantwortlichen Politiker entscheiden und dabei alle relevanten Aspekte ins Auge fassen.

Auch im Hinblick auf die ethischen Fragen ist eine differenziertere Betrachtung vonnöten, als dies im ersten Impuls naheliegend erschien. Ist es wirklich human, jetzt Alte und Todgeweihte im Altersheim oder auf der Intensivstation zu isolieren? Bei Abwägung aller Bedenken könnte es am Ende menschlicher sein, von seinen engsten Angehörigen Abschied nehmen zu dürfen, als einige Wochen später vereinsamt dahinzuscheiden.

Die Freiheitsrechte sind ein sehr hohes Gut

Unabhängig davon sind auch die Eingriffe in die Grundrechte der Menschen nicht für einen längeren Zeitraum hinnehmbar. Die Hürden dafür müssen hoch, sehr hoch gelegt werden. In einer freiheitlichen Demokratie darf sich der Staat nicht dauerhaft derart tief in die Lebensgestaltung der Menschen einmischen.

Das Wesen der Freiheit liegt in der Selbstbestimmung des Individuums.

Es ist nicht Aufgabe des Staates, den mündigen Bürger durch Zwangsmaßnahmen vor sich selbst zu schützen. Genauso wenig darf er Ältere von der Teilhabe am öffentlichen Leben ausschließen, nur weil sie – rein statistisch gesehen – tendenziell stärker vom Coronavirus bedroht sind.

Der Weg in die fürsorgliche Diktatur ist kürzer, als man denkt

Was der Staat tun kann und tun muss ist, die Allgemeinheit vor dem Einzelnen zu schützen, sofern eine Gefahr von ihm ausgeht. Letzten Endes bleibt es aber eine schwierige Grenzziehung.

Dabei droht das Abgleiten in einen wohlmeinenden Totalitarismus, der sanfte Weg in die Diktatur. Indes, auch eine fürsorgliche Diktatur bleibt eine Diktatur. Totalitäre Staaten sind ja nicht per se böse. Auch sie wollen das Gute, aber eben mit den Zielen und auf die Weise, die die jeweils Herrschenden für richtig halten. Es ist die Normalität von Diktaturen, in das Leben der Bürger einzugreifen. Die Freiheit und Selbstbestimmung des Individuums bleiben dabei regelmäßig auf der Strecke. Das kann nicht unser Weg sein.

Nur in extremen Ausnahmesituationen und zeitlich streng limitiert, darf sich der Staat anmaßen, das Aufenthaltsbestimmungsrecht seiner Bürger einzuschränken.

Coronavirus – Schluss mit lustig!

Nach den neuesten Zahlen gibt es mittlerweile in Deutschland schon weit mehr als 10.000 Corona-Fälle. Im Artikel „Das Coronavirus – So schnell breitet es sich aus. Aber wir können etwas tun! (>LinkedIn 2020-03-18)“ wird ein Modell für die Ausbreitung des Coronavirus entwickelt und dargelegt, wie schnell die Anzahl der Infizierten schon in wenigen Wochen ansteigen wird, wenn wir nicht SOFORT wirksame Gegenmaßnahmen ergreifen.

Rigide Maßnahmen sind unabwendbar

Die gegenwärtig in allen Bundesländern verfügten Maßnahmen sind hilfreich. Es ist aber zu befürchten, dass sie nicht ausreichend sind, die Ausbreitung des Virus effektiv zu bekämpfen. Zudem ist es fraglich, ob der ausschließliche Fokus der Politik auf die Funktionsfähigkeit des Gesundheitssystems nicht zu eng gesetzt ist.

Wenn wir jetzt zu zögerlich sind, werden wir nur den Anstieg der Neuinfektionen weiter nach hinten verschieben und etwas flacher gestalten. Momentan scheint genau dies noch das – etwas fatalistisch anmutende – Ziel der verantwortlichen Politiker zu sein (s. z.B. https://www.welt.de/politik/deutschland/article206578991/Coronavirus-Spahn-Das-wird-eher-viele-Monate-so-gehen-als-viele-Wochen.html). Das reicht aber nicht! Es reicht vielleicht zum Überleben, es reicht aber nicht dafür, die Krise in all ihren Aspekten tatsächlich und nachhaltig wirksam zu überwinden.

Was bringen halbherzige Maßnahmen?

Mit einer moderaten Eindämmung der Anzahl der Neuinfektionen im Sinne einer Kurvenverflachung und Verschiebung des Peaks der Virusinfektionen in die weitere Zukunft wird es uns gelingen, die Funktionsfähigkeit des Gesundheitssystems aufrechtzuerhalten. Wir können so sicherstellen, dass die Anzahl der Corona-spezifischen Todesfälle niedrig bleibt. Das ist ein großartiges Ziel. Es ist aber nicht das Einzige, worum es geht und worum es gehen muss. Im oben zitierten Artikel „Das Coronavirus – So schnell breitet es sich aus. Aber wir können etwas tun! (>sumymus blog 2020-03-20)“ wird gezeigt, dass es bei Zweitinfektionsraten von maximal 1,2 bis 1,3 (d.h., 10 Erkrankte infizieren 12 bis 13 Gesunde) voraussichtlich viele Monate dauern wird (wahrscheinlich mehr als 12), den Peak bei der Anzahl der Neuinfektionen auf ein vom Gesundheitssystem beherrschbares Niveau abzusenken.

Es geht nicht nur um das Gesundheitssystem

Der Schaden eines solch langen Stillstands wäre immens. Die Wirtschaft würde dadurch schwer in Mitleidenschaft gezogen. Für alle wäre der Niedergang schon in wenigen Monaten spürbar. Und viele Existenzen wären ernstlich bedroht. So kann nur verfahren, wer sehenden Auges “Das Kinde mit dem Bade ausschütten“ will. Langfristig wäre das ein viel, viel größeres Unglück, als jetzt für einige Wochen auf billigen Spaß und Zerstreuung verzichten zu müssen. Ein bisschen Gegensteuern kann also nicht die Lösung sein.

Mit den gegenwärtig verfügten moderaten Maßnahmen sind vermutlich keine kleineren Zweitinfektionsraten als die genannten erreichbar. Das bedeutet: ein halbes, vielleicht ein ganzes Jahr mit merklichen und von vielen bereits als schmerzhaft empfundene Beeinträchtigungen des öffentlichen Lebens. Für nicht wenige existenzbedrohend. Und was erreicht man damit? – Die Aufrechterhaltung der Funktionsfähigkeit des Gesundheitssystems. Das kostet einen hohen Preis und greift dennoch zu kurz.

Klare Entscheidungen, vernünftiges und konsequentes Handeln

Die Politik muss jetzt wirklich drastische Maßnahmen ergreifen bis hin zu Ausgangssperren. Das gilt zumindest für die großen Städte. Wer immer noch nicht verstanden hat, dass die Lage ernst ist, der muss erforderlichenfalls mit Zwangsmaßnahmen zu einem sozialverträglichen Verhalten genötigt werden. Es sollte jedermann klar sein: Die Freiheit des einzelnen endet da, wo die Unversehrtheit und Freiheit aller ernsthaft gefährdet ist. Deshalb gilt: Vernünftige Menschen bleiben zuhause und reduzieren ihre sozialen Kontakte auf das absolut notwendige Mindestmaß. Wem diese Einsicht fehlt, dem muss man klare Anweisungen erteilen.

Das Ziel muss es sein, der Ausbreitung des Virus die Basis zu entziehen. Das geht nur durch entschlossenes und schnelles Handeln.

Mit halbherzigen Maßnahmen droht eine Hängepartie, ein viele Monate andauernder Stillstand in Wirtschaft und Gesellschaft mit unabsehbaren Konsequenzen.

Was wäre die Alternative?

Für den Fall, dass wir jetzt nicht wirksam handeln und es nicht gelingt, die Anzahl der Neuinfektionen dramatisch zu reduzieren, droht am Ende die Erkenntnis:

Operation Gesundheitswesen gelungen,
Patient Wirtschaft tot.

Das kann nicht das Ziel sein! Das darf nicht das Ziel sein! Es ist keine Option, die Krise auf viele Monate hinzuziehen. Deswegen müssen wir jetzt den beschwerlichen Weg einschlagen und kurzfristig schmerzhafte Beeinträchtigungen für jeden einzelnen hinnehmen. Die Alternative wäre ein wirtschaftlicher Zusammenbruch, wie man ihn nur aus Kriegszeiten kennt.

Lieber ein Ende mit Schrecken, als ein Schrecken ohne Ende

Nochmal: Vernünftige Menschen haben in den nächsten Wochen keine vermeidbaren (d.h., nicht lebensnotwendigen) persönlichen Kontakte außerhalb ihrer vier Wände. Alle anderen müssen bei Strafandrohung zuhause bleiben. So jedenfalls sollte die klare Ansage der verantwortlichen Politiker lauten.

Zusammenfassung

Wir haben drei Alternativen:

  1. Alles laufen lassen wie gehabt.
    Haltung: Wird schon nicht so schlimm kommen.
    Gesundheitssystem: Die Anzahl der Infizierten steigt bereits jetzt rasant und wird an noch Geschwindigkeit zulegen. Der Peak der Infektionszahlen wird schon in einigen Wochen erreicht. Millionen werdendavon betroffen sein. Viele Infizierte haben nur mäßige Symptome, wie das auch bei den jährlichen Grippewellen der Fall ist. Personen mit Vorerkrankungen sind besonders von ernsten Verläufen betroffen. Schon in wenigen Wochen, spätestens 2 – 3 Monaten ist das Gesundheitssystem völlig überlastet, es gibt viele Tote.
    Wirtschaft und Gesellschaft: Die Wirtschaft floriert zunächst munter weiter. Aber das dicke Ende kommt mit Sicherheit. Wahrscheinlich steuern wir auf eine massive Rezession zu. Dazu ernten wir eine gesellschaftliche und eine politische Krise.

  2. Moderate Maßnahmen ergreifen (so wie wir das aktuell sehen).
    Ziel: das Gesundheitssystem am Laufen halten.
    Gesundheitssystem: Die Anzahl der Infizierten steigt zunächst noch ungebremst exponentiell. Nach wenigen Wochen wird sich der Anstieg etwas verlangsamen. Der Peak der Infektionszahlen wird erst nach vielen Monaten erreicht. Aufgrund der geringeren Neuinfektionszahlen pro Zeiteinheit im Vergleich zur Alternative 1 bleibt das Gesundheitssystem funktionsfähig. Es gibt nur wenige Tote.
    Wirtschaft und Gesellschaft: Die Maßnahmen ziehen sich lange hin. Gesellschaft und Wirtschaft werden über viele Monate hinweg stark beeinträchtigt. Die Wirtschaft stagniert und bricht dann wahrscheinlich dramatisch ein. Es gibt viele Insolvenzen. Alle werden darunter leiden, am Ende sogar der Staat.

  3. Drastische Maßnahmen ergreifen (inkl. Ausgangssperren).
    Mehrere Ziele: das Gesundheitssystem am Laufen halten, der Ausbreitung des Virus den Boden entziehen. Wirtschaft und Gesellschaft so schnell wie möglich wieder in einen Normalmodus bringen.
    Gesundheitssystem: Die Anzahl der Infizierten steigt jetzt noch schnell, wird aber nach Inkrafttretend der scharfen Maßnahmen bald an Dynamik verlieren. Der Peak der Neuinfektionen wird schon in wenigen Wochen erreicht. Wir reden dann wahrscheinlich von „nur“ einigen zehntausend Menschen. Insgesamt wird eine höchstens 6-stellige Anzahl von Personen betroffen sein. Das Gesundheitssystem bleibt funktionsfähig. Es gibt nur wenige Tote. Infizierte werden konsequent in Quarantäne genommen. Die Ausbreitung des Virus ist eingedämmt.
    Gesellschaft und Wirtschaft kommen jetzt sofort zum fast vollständigen Stillstand. Aber: Schon in wenigen Wochen kann man schrittweise wieder in einen normal zu nennenden Modus mit nur leichten Einschränkungen zurückkehren. Die Wirtschaft erholt sich sehr schnell. Es gibt Beeinträchtigungen, sie sind aber zu verkraften. Der Kollaps wird abgewendet.

Etwas anderes als Altenative 3, kann doch wohl niemand ernsthaft in Erwägung ziehen.

Das Coronavirus – So schnell breitet es sich aus.

Aber wir können etwas dagegen tun!

Zusammenfassung

Es wird ein Modell für die Ausbreitung des Coronavirus entwickelt. Darauf fußend werden die resultierenden Zahlen der Infektionsverläufe prognostiziert (Diagramme) und die Sinnhaftigkeit der Maßnahmen abgeleitet.

Sofern wir die jetzt verfügten Maßnahmen umsetzen und uns alle daran halten, ist mit hoher Wahrscheinlichkeit sichergestellt, dass es nicht wieder zu einem exponentiellen Anstieg der Infektionszahlen und damit zu neuen Ausbreitungswellen kommt. In einer etwas moderateren Form ist das erforderlich bis zur Zulassung und allgemeinen Verfügbarkeit eines Impfstoffs. Erst danach können wir wieder in „alte Verhaltensmuster“ zurückfallen.

Entscheidend ist: Zunächst müssen wir die akut anstehenden drastischen Verhaltensregeln konsequent einhalten und die Einschränkungen geduldig hinnehmen. Dabei wird die Wirtschaft kurzfristig leiden, aber schon nach Überwindung des jetzt noch vor uns liegenden hohen Anstiegs an Neuinfektionen wird in 4 bis 6 Wochen ein durchaus normales Wirtschaftsleben mit einigen kleineren Einschränkungen wieder möglich sein. Die Alternative einer halbherzigen Umsetzung wäre ein dauerhaftes Stagnieren der Wirtschaft, weil immer wieder neue Ansteckungswellen drohen.

Hinweis für den eiligen Leser: Die Abschnitte „ABER: Wirtschaft und Gesellschaft ebenfalls im Auge behalten„, „Validierung der Lösungsstrategie“ und „Schluss und Ausblick“ weiter unten enthalten alles Wesentliche für die erfolgreiche Bewältigung im Hinblick auf die weitere Ausbreitung des Virus.

Einleitung

Am Corona-Virus kommt man in diesen Tagen nicht vorbei. Nahezu alle öffentlichen Veranstaltungen sind abgesagt. Sportstätten, Theater, Museen sind dicht, Fußballspiele finden nicht mehr statt. Clubs geschlossen, Kneipen und Restaurants im reduzierten Abstandsbetrieb. Konferenzen und Messen abgesagt. Mittlerweile sind auch die Grenzen geschlossen. Können wir so die weiter Ausbreitung der Epidemie stoppen oder zumindest den Verlauf und Anstieg der Neuinfektionen verlangsamen? Zumindest kann man diesen Maßnahmen, auch ohne Experte  zu sein, die Vernünftigkeit nicht absprechen. Die Idee dahinter: Wenn die Menschen weniger in Kontakt zueinander treten, dann sollte doch zumindest das Ansteckungsrisiko für die Nichtinfizierten sinken. Das ist einleuchten!

Im Folgenden soll zunächst ein einfaches Modell für die Verbreitung des Virus entwickelt werden. Auf Basis des Modells können wir dann abschätzen, wie die Zahl der Infizierten weiter wachsen wird. Ferner können wir durch Variation der Modellparameter unterschiedliche Szenarien durchspielen und so die Verhaltensmaßregeln der Mediziner (Hygiene, soziale Kontakte, …) im Modell spiegeln. Wir gewinnen so Erkenntnisse über die mutmaßliche Wirksamkeit der Maßnahmen im Hinblick auf die Ausbreitungsgeschwindigkeit der Corona-Epidemie und können auf dieser Basis unser eigenes Verhalten daraufhin abstimmen.

Ausgangsbasis für die Modellbildung

Die Inkubationszeit des „COVID-19“ genannten Virus beträgt zwischen 2 und 14 Tagen. Meist werden 7 – 14 Tage angegeben. Das Virus wird vornehmlich durch Tröpfcheninfektion übertragen. Diese kann von direkt von Mensch zu Mensch erfolgen, wenn Virus-haltige Tröpfchen an die Schleimhäute der Atemwege gelangen. Auch eine Übertragung durch Schmierinfektion über die Hände, die mit der Mund- oder Nasenschleimhaut sowie mit der Augenbindehaut in Kontakt gebracht werden, ist prinzipiell nicht ausgeschlossen, spielt aber vermutlich nur eine untergeordnete Rolle. Das Virus ist hoch ansteckend und kann schon innerhalb der Inkubationszeit auf andere übertragen werden. Oft ist es sogar so, dass ein Infizierter noch gar keine Beschwerden verspürt) (s. https://www.infektionsschutz.de/coronavirus-sars-cov-2.html).

Das Robert-Koch-Institut gibt für die  Dauer der Infektiosität einen Zeitraum von bis zu 8 Tagen an. (https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText5). Das ist die Zeitspanne, innerhalb derer Patienten, die mit COVID-19 infiziert sind und Symptome aufweisen, das Virus an andere übertragen können. Diese Zahl ist indes unsicher, sie beruht tatsächlich nur auf einer kleinen Studie mit 9 Patienten. Ebenfalls bekannt ist, dass auch Patienten ohne Symptome andere infizieren können, offenbar auch schon innerhalb der Inkubationszeit. Für die Modellbildung entscheidend ist weniger die genaue Größe der Infektiosität, als vielmehr die definitive zeitliche Begrenztheit. Wenn jeder Infizierte dauerhaft Überträger des Virus sein würde, wäre es unausweichlich, dass über kurz oder lang alle Menschen erkrankten. Völlig gleich, welche (realistischen) Schutzmaßnahmen man auch immer ergreifen würde.

Mathematisches Modell für die Beschreibung der Ausbreitung

Sei  \(N\) die Größe der Population. Der Wert \(q\) steht für die Wahrscheinlichkeit, dass beim Kontakt mit einem Virusträger eine Übertragung stattfindet (was nach den obigen Ausführungen nur innerhalb der begrenzten Infektionszeit möglich ist). Ferner sei    \(k\) die durchschnittliche Anzahl der Kontaktpersonen und  \(k_{n}\) die durchschnittliche Anzahl der nicht infizierten Kontaktpersonen eines Erkrankten. Die Anzahl der Neuinfizierten im Intervall  bezeichnen wir mit  \(a_{n}\). Die Gesamtanzahl aller bis zum Intervall \(n\) bereits Erkrankten in der Population nennen wir \(s_{n} \). Offensichtlich gilt \(s_{n} = \sum_{i=0}^{n} a_{i} \).

Für die Anzahl der Neuinfizierten im Intervall \(n+1\)  erhalten wir nun:

\begin{equation} a_{n+1} = q \cdot k_{n} \cdot a_{n} \end{equation}

Wie kommen wir hierin zum Wert von \(k_{n}\)? Ganz einfach: Die Wahrscheinlich dafür, dass eine zufällig aus der Gesamtpopulation gewählte Kontaktperson noch nicht infiziert ist, können wir leicht bestimmen. Es ist der Quotient \(\frac{N-s_{n}}{N} \). Demnach gilt

\begin{equation} k_{n} = \frac{N-s_{n}}{N} \end{equation}

Zusammengefasst erhalten wir also

\begin{equation} a_{n+1} = q \cdot k \cdot \left (1 – \frac{s_{n}}{N} \right ) \cdot a_{n} \end{equation}

Oder ausgeschrieben

\begin{equation} a_{n+1} = q \cdot k \cdot \left (1 – \frac{1}{N} \sum_{i=0}^{n} a_{i} \right ) \cdot a_{n} \end{equation}

Damit sind wir mit der Modellformulierung bereits fertig.

Exemplarische Modellbetrachtung

Was ist ein vernünftiges Intervall in der Modellbeschreibung? Nach dem eingangs zur Inkubationszeit und zur Zeitdauer der Infektiosität Gesagten, erscheint es sinnvoll, als Intervall einen Zeitraum von etwa 7 Tagen zu wählen. Der Index \(n\) steht daher für die fortlaufende Nummer einer Woche. Wir fragen also nach der Anzahl der Neuinfektionen in der \(n\)-ten Woche des Betrachtungszeitraums.

Das RKI (Robert-Koch Institut) gibt an, dass derzeit ein Erkrankter im Mittel 2,4 bis 3,3 weitere Personen infiziert. Im Modell können wir das folgendermaßen abbilden: Wir nehmen z.B. an, die durchschnittliche Anzahl  \(k\) der Kontaktpersonen eines Infizierten liege bei etwa 24 – 33 (pro Woche); gleichzeitig unterstellen wir ein Ansteckungsrisiko von  \(q\) pro Kontaktperson. Im Hinblick auf die Ausbreitung des Virus liefe es im Mittel auf dasselbe hinaus, wenn wir stattdessen von 2,4 bis 3,3 Kontaktpersonen bei einem Ansteckungsrisiko von 100% ausgehen würden oder 48 bis 66 Kontaktpersonen bei einem Ansteckungsrisiko von 5%. Entscheidend ist lediglich das Produkt aus beiden Modellparametern.

Dadurch wird das effektiv von einem Erkrankten ausgehende Risiko bei Einhaltung der Verhaltensregeln (Hygienemaßnahmen, möglichst weitgehende Kontaktreduzierung) beschrieben. Solange noch kein Impfstoff zur Verfügung steht, ist dies die einzige Stellgröße zur Verlangsamung des Anstiegs der Infektionszahlen. In Abb. 1 und 2 sind die gerechneten Verläufe der Neuinfektionen und der Gesamtfallzahlen für Zweitinfektionsraten von 3,3 bzw. 2,4 dargestellt.

Anwendung auf den Status quo

Nachfolgend sind zwei Diagramme dargestellt, die zeigen, wie sich die Infektionszahlen wahrscheinlich entwickeln, wenn man nichts tut.

Abb. 1: Verlauf der Infektionen bei \(q = 10\%\), \(k = 33\) (entsprechend 3,3 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen erreicht in der 16. Woche mit ca. 37 Mio. ihr Maximum. Dann sind schon 60 Mio. Einwohner infiziert. Bereits nach 17 Wochen sind nahezu alle 83 Mio. Einwohner erkrankt.

Abb. 2: Verlauf der Infektionen bei \(q = 10\%\), \(k = 24\%\) entsprechend 2,4 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen erreicht in der 22. Woche ihr Maximum mit ca. 23,5 Mio. Bis dahin sind bereits über 50 Mio. Einwohner infiziert. Die Gesamtanzahl der Infizierten bleibt nach der 24. Woche mit knapp 80 Mio. konstant. Am Ende werden nur etwa 3 Mio. verschont.

Die aus den aktuell vorherrschenden Zweitinfektionen (2,4 – 3,3) resultierenden Verläufe sind gewiss nicht beherrschbar. Bei 3,3 (s. Abb. 1) erhalten wir 37 Mio. Neuinfektionen bereits in der 16. Ausbreitungswoche. Sogar bei 2,4 (s. Abb. 2) sind es im Maximum immer noch fast 24 Mio. Neuinfektionen, wenn auch erst in der 22. Woche.

Einfache Modellanalyse

Mittels des Modells kann man leicht bestimmen, welche Bedingung erfüllt sein muss, damit die Anzahl der Neuinfektionen ab einem bestimmten Zeitintervall nicht weiter wächst. Dies ist doch offensichtlich dann der Fall, wenn \(\frac {a_{n+1}}{a_{n}}  \le 1\) ist, wenn also gilt, \( q k \left (1 – \frac{s_{n}}{N} \right ) \le 1\). Demnach lautet die Bedingung

\begin{equation} \frac{s_{n}} {N} \ge 1 – \frac{1}{q k} \end{equation}

Erst dann also, wenn der relative Anteil der Infizierten an der Gesamtpopulation erstmals den Wert \(1 – \frac{1}{q k}\) übersteigt, gehen die Neuinfektionen zurück. Diesen Zusammenhang kann man umgekehrt zur Bestimmung der Gesamtanzahl der Erkrankten bei diesem Umkehrpunkt nutzen. Im Falle der obigen Werte des RKI (2,4 bis 3,3) liegen die entsprechenden kumulierten Infektionszahlen im Wendepunkt bei \(\frac{s_{N}}{N} = 58\%\) (das sind etwa 48 Mio. Menschen in Woche \(n = 16\)) bzw. \( \frac{s_{N}}{N} = 70\% \) (das sind etwa 58 Mio. Menschen in Woche \(n = 22\)).

Abb. 3: Verlauf der Neuinfektionen bei Variation der Zweitinfektionsrate pro Erkranktem von 3 bis hinunter auf 1,1 (entsprechend \(q = 10\%\), \(k = 30, 25, 20,\cdots11\) oder jeder anderen Kombination von Ansteckungsrate \(q\) und Anzahl der Kontaktpersonen \(k\) mit dem gleichen Produkt \(q \cdot k\)). Die nicht dargestellten Maxima bei den Kurven für 3, 2,5, 2 und 1,9 Zweitinfektionen liegen bei 37 Mio., 24,5 Mio., 15,5 Mio. und 14 Mio. Neuinfektionen pro Intervall (Woche). Der Höchststand für 1,1 Zweitinfektionen (dunkelgrüne Kurve ganz rechts) liegt weit außerhalb des Betrachtungszeitraums etwa in der 149. Woche mit nur noch 365.000 Neuinfektionen und ist gleichfalls nicht dargestellt.

Wie man der Grafik (s. Abb. 3) entnimmt, verschiebt sich das Maximum der Anzahl der Neuinfektionen bei einer geringeren Anzahl von Zweitinfektionen schnell nach rechts. Man gewinnt durch die Reduktion der Zweitinfektionsrate also auf jeden Fall Zeit, die Leben retten kann. Diese Zeit kann man nutzen, um z.B. einen Impfstoff zu finden und einsatzreif zu machen. Fast noch wichtiger in diesem Zusammenhang: Die Überlastung des Gesundheitssystems wird vermieden, wenn bestimmte Grenzen von Neuinfektionen pro Woche unterschritten werden.

Im Gesundheitssystem handlungsfähig bleiben

In Deutschland verfügen wir über ca. 20.000 Intensivstationen. Wenn wir annehmen, dass die schweren Krankheitsverläufe in etwa 1% der Fälle vorkommen, wären wir folglich in der Lage, im Extremfall bis zu 2 Mio. (= 20.000/0,01) Neuinfektionen pro Woche zu beherrschen. Das entspricht einer Zweitinfektionsrate von 1,2 – 1,3 (s. die beiden entsprechend betitelten grünen Kurven in Abb. 3). Noch besser wäre freilich es indessen, die Anzahl der Zweitinfektionen auf 1,1 zu bringen (dunkelgrüne Kurve ganz rechts in Abb. 3; ihr Maximum ist nicht mehr dargestellt und liegt etwa in der 149. Woche mit nur noch 365.000 Neuinfektionen; s. a. Abb. 10 im Anhang).

Ohne Impfstoff müssen wir die Zweitinfektionen unterhalb von 1,3 halten, andernfalls lässt sich die Überlastung des Gesundheitssystems mit der Konsequenz vieler Todesfälle kaum vermeiden. Wenn das nicht gelingt, werden wir schon bei noch moderaten 1,5 bzw. 1,4 Zweitinfektionen im Maximum 6 Mio. bzw. 4,2 Mio. Neuinfektionen pro Woche sehen. Dies wird dann allerdings erst in der 43. bzw. der 50. Woche auftreten, so dass man immerhin hoffen kann, dass bis dahin ein Impfstoff verfügbar sein wird (s. a. Abb. 8). Mit 1,2 Zweitinfektionen würden wir die Neuinfektionen pro Woche unter dem Maximalwert von 1,3 Mio. halten können, wobei dieser Höchstwert sogar erst in 84. Woche auftreten würde.

ABER: Wirtschaft und Gesellschaft ebenfalls im Auge behalten

Ist das also die Lösung? Wohl kaum! Richtig ist: Aufgrund der Kurvenverflachung wäre die Corona-Krise für Zweitinfektionsraten von maximal 1,2 bis 1,3 am Ende vom Gesundheitssystem zu bewältigen. Das hieße aber auch, die Wirtschaft über 9 bis 12 Monate oder vielleicht sogar noch weit darüber hinaus auf Sparflamme zu fahren. Wir würden zwar überleben, aber zu welchem Preis? Letztlich ist es also keine sinnvolle Lösung, den Peak der Neuinfektionen einfach nur in die Zukunft zu schieben, wie das in den Medien und Talkrunden gerne dargestellt wird. Endscheidend ist dies: Wir müssen es schaffen, die Zweitinfektionen auf einen Wert von 1 oder darunter zu bringen. Nur so können wir Neuinfektionen aus der Phase des exponentiellen Wachstums herausbringen und die Krise letztlich für das Gesundheitssystem, die Wirtschaft UND die Gesellschaft insgesamt konstruktiv gestalten.

Dafür ist es unbedingt erforderlich, jetzt sofort und mit aller Macht wirksame Maßnahmen zu ergreifen. Die Maßnahmen sind z. T. schon in Kraft gesetzt, sie müssen aber auch von allen konsequent eingehalten und nötigenfalls gar verschärft werden. Bei Erfolg werden wir schon binnen 4 bis 6 Wochen Licht am Ende des Tunnels sehen und können sukzessive zur Normalität zurückkehren.

Validierung der Lösungsstrategie

Mittels des Modells können wir diese Strategie leicht überprüfen. Derzeit befinden wir uns noch in der Phase exponentiellen Wachstums mit \(q \cdot k = 2.4 \cdots 3.3\) Zweitinfektionen und rechnen daher mit um die entsprechenden Faktoren 2,4x bis 3,3x vervielfachten Neuinfektionen von Woche zu Woche. Wir müssen dafür sorgen, dass das Produkt \(q \cdot k \) relativ schnell \(< 1\) wird.

Das erste Auftreten des Corona-Virus in Deutschalnd liegt etwa 8 Wochen zurück. Im bisherigen Verlauf hat sich das Virus mit etwa 3,3 Zweitinfektionen ausgebreitet (wir gehen in der Modellrechnung von diesem pessimistischen Wert aus). Nun unterstellen wir, dass es gelingt, mit den angekündigten und ggf. noch zu verschärfenden Maßnahmen diesen Wert nach Woche 10 auf 0,9 zu drücken (im Modell also \(q \cdot k = 0.9\)). Abb. 4 zeigt den resultierenden Verlauf der Neuinfektionen und der Gesamtanzahl der Infizierten über die Zeit.

Ziel 1: 0,9 Zweitinfektionen – nicht hinreichend

Abb. 4: Verlauf der Infektionen bei \(q =10\%\), \(k = 33\) bis Woche 10 und \(q = 10\%\), \(k =9\) ab Woche 11 (entsprechend 0,9 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Es dauert ein Jahr, bis die Krise komplett überstanden ist.

Der Verlauf nach Abb. 4 zeigt, wie es prinzipiell gehen kann. Die Anzahl der Neuinfektionen erreicht in der 10. Woche ihr Maximum mit ca. 46.000. Danach gibt es von Woche zu Woche etwa 10% weniger Neuinfektionen. Zum Zeitpunkt des Höchststands sind bereits knapp 70.000 Personen infiziert. Die Gesamtanzahl der Infizierten bleibt nach der 52. Woche mit knapp 470.000 konstant. Die Dauer der Krise ist mit einem vollen Jahr aber dennoch entschieden zu lang.

Ziel 2: Dauerhaft 0,5 Zweitinfektionen – zu optimistisch

Betrachten wir ein zweites Beispiel. Wieder mit den pessimistischen 3,3 Zweitinfektionen im anfänglichen Verlauf bis zur 10. Woche. Ab Woche 10 gehen wir nun von nur noch 0,5 Zweitinfektionen aus (im Modell also \(q \cdot k = 0.5\)). Abb. 5 zeigt den resultierenden Verlauf.

Abb. 5: Verlauf der Infektionen bei \(q =10\%\), \(k = 33\) bis Woche 10 und \(q = 10\%\), \(k = 5\) ab Woche 11 (entsprechend 0,5 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Bereits 6 Wochen (ab Woche 16) nach Inkrafttreten der wirksamen Maßnahmen ist die Krise im Wesentlichen überstanden.

Wie im vorigen Fall erreicht auch hier die Anzahl der Neuinfektionen in der 10. Woche ihr Maximum mit ca. 46.000. Danach sinkt die Anzahl der Neuinfektionen rapide (von Woche zu Woche etwa 50% weniger Neuinfektionen). Zum Zeitpunkt des Höchststands sind wieder etwa 70.000 Personen erkrankt. Die Gesamtanzahl der Infizierten bleibt nun aber schon spätestens ab der 16. Woche nach Ausbruch der Krise und nur 6 Wochen nach Verfügen der wirksamen Maßnahmen konstant unter 120.000. Die Krise kann derart im Wesentlichen innerhalb eines Quartals entschärft werden: Für das Gesundheitssystem, die Wirtschaft UND die Gesellschaft.

Ziel 3: 0,5 Zweitinfektionen / 1 Zweitinfektion

Auch für den Fall, dass es nicht gelingt, die Zweitinfektionen dauerhaft auf 0,5 zu halten und der Wert nach Aufheben der rigiden Maßnahmen z.B. ab der 20 Woche wieder auf etwa 1 steigt, darf die Krise i. W. als überwunden gelten. Die Anzahl der Neuinfektionen pro Woche kann nach aller Voraussicht auch mit dem höheren Zweitinfektionswert noch unter 100 oder zumindest im niedrigen 3-stelligen Bereich gehalten werden. Das ist ohne weiteres beherrschbar. Die entsprechende Kurve ist in Abb. 6 dargestellt, unterscheidet sich insgesamt aber kaum von der Darstellung in Abb. 5.

Abb. 6: Verlauf der Infektionen mit \(q = 10\%\), \(k = 33\) bis Woche 10 und \(q =10\%\), \(k = 5\) ab Woche 11 (entsprechend 0,5 Zweitinfektionen pro Erkranktem) sowie \(q = 10\%\), \(k = 10\) ab Woche 20 (entsprechend 1 Zweitinfektion pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen halbiert sich nach Woche 10 im Wochenrhythmus bis zur 20. Woche. Danach bleibt die Rate in etwa konstant bei bis zu einigen 100 oder darunter. Der genaue Wert hängt davon ab, wie lange und konsequent die rigiden Maßnahmen beibehalten werden. Und auch davon, wie die Zweitinfektionen pro Erkranktem in der Phase danach tatsächlich liegen. Auf jeden Fall müssen sie \(\le 1\) bleiben. Der Gesamtverlauf ist im Wesentlichen derselbe wie im Falle von Abb. 5 (man beachte die unterschiedliche Skalierung der rechten Achse).

Schluss und Ausblick

Die unbedingte Voraussetzung für das Gelingen ist:

  • Die Zweitinfektionsrate (im Modell das Produkt \(q \cdot k\)) muss dauerhaft auf Werte \(\le 1\) gedrückt werden. Dazu müssen entweder die Kontaktzahlen auf niedrigerem Niveau als bisher allgemein üblich gehalten und/oder das individuelle Ansteckungsrisiko durch dauerhaft hohe Hygienestandards („sozialverträgliches“ Husten, häufiges Händewaschen, auf Händeschütteln verzichten etc.) deutlich reduziert werden.

Sofern wir das entsprechend umsetzen und uns alle daran halten, ist sichergestellt, dass es nicht wieder zu einem exponentiellen Anstieg der Infektionszahlen und damit zu neuen Ausbreitungswellen kommt. Das ist erforderlich bis zur Zulassung und allgemeinen Verfügbarkeit eines Impfstoffs. Erst danach können wir wieder in „alte Verhaltensmuster“ zurückfallen. Wobei die Einhaltung höherer Hygienestandards auch nach der Überwindung der Krise nicht von Nachteil sein wird.

Entscheidend ist: Zunächst müssen wir die akut anstehenden drastischen Verhaltensregeln konsequent einhalten und die Einschränkungen geduldig hinnehmen. Dabei wird die Wirtschaft kurzfristig leiden, aber schon nach Überwindung des jetzt noch vor uns liegenden hohen Anstiegs an Neuinfektionen wird in 4 bis 6 Wochen ein durchaus normales Wirtschaftsleben mit einigen kleineren Einschränkungen wieder möglich sein. Die Alternative einer halbherzigen Umsetzung wäre ein dauerhaftes Stagnieren der Wirtschaft, weil immer wieder neue Ansteckungswellen drohen.

Anhang

Im Folgenden sind die Verläufe der Neuinfektionen und der Gesamtanzahl der Infizierten bei Zweitinfektionsraten von 2, 1,5, 1,2, und 1,1 dargestellt. Solche Verläufe sind kritisch und weisen auch bei kleinen Zweitinfektionsraten \(> 1\) einen exponentiellen Anstieg der Infektionszahlen auf. Werte von 1,1 oder 1,2 können allenfalls dabei helfen, Zeit zu gewinnen bis zur Zulassung eines Impfstoffs. Richtig ist dabei: Der Peak der Neuinfektionen wird weit in die Zukunft hinausgeschoben und abgeflacht (1 – 3 Jahre). Das hilft indes nur dem Gesundheitssystem, würde aber trotzdem erhebliche wirtschaftliche und soziale Einschränkungen nach sich ziehen. Bei längerer Dauer von nur halbherzigen Maßnahmen ist zu befürchten, dass bis dahin die Wirtschaft einen totalen Zusammenbruch erleidet. Deswegen führt an den oben skizzierten drastischen Maßnahmen kein Weg vorbei. Alles andere wäre wirtschaftlicher Selbstmord.

2 Zweitinfektionen

Abb. 7: Verlauf der Infektionen bei \(q = 10\%\), \(k = 20\) (entsprechend 2 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen erreicht in der 26. Woche ihr Maximum mit ca. 15,5 Mio. Zu diesem Zeitpunkt sind bereits 42 Mio. Einwohner infiziert. Die Gesamtanzahl der Infizierten bleibt nach der 32. Woche mit knapp 72 Mio. konstant. Am Ende bleiben nur 11 Mio. verschont.

1,5 Zweitinfektionen

Abb. 8: Verlauf der Infektionen bei \(q = 10\%\), \(k = 15\) (entsprechend 1,5 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen erreicht in der 22. Woche ihren Höchststand mit ca. 6 Mio. Dann sind bereits 28 Mio. Einwohner infiziert. Die Gesamtanzahl der Infizierten bleibt nach der 52. Woche mit ca. 51 Mio. konstant (61,5% der Bevölkerung). Am Ende bleiben 32 Mio. Einwohner verschont.

1,2 Zweitinfektionen

Abb. 9: Verlauf der Infektionen bei \(q = 10\%\), \(k = 12\) (entsprechend 1,2 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen erreicht in der 85. Woche ihr Maximum mit ca. 1,3 Mio. Bis dahin haben sich insgesamt ca. 14 Mio. Einwohner infiziert. Die Gesamtanzahl der Infizierten ändert sich nach zwei Jahren (ab der 104. Woche) kaum noch und verharrt bei ca. 27 Mio. (33% der Bevölkerung). Am Ende bleiben in diesem Fall 56 Mio. Einwohner verschont.

1,1 Zweitinfektionen

Abb. 10: Verlauf der Infektionen bei \(q = 10\%\), \(k = 11\) (entsprechend 1,1 Zweitinfektionen pro Erkranktem). Gesamtanzahl der Infizierten (blau) auf der linken Achse, Neuinfektionen (rot) auf der rechten Achse. Die Anzahl der Neuinfektionen erreicht in der 149. Woche ihren Höchststand mit ca. 365.000. Bis dahin haben sich insgesamt ca. 7,5 Mio. Einwohner infiziert. Die Gesamtanzahl der Infizierten ändert sich nach 4 Jahren (ab der 200. Woche) kaum noch und verharrt bei ca. 15 Mio. (18% der Bevölkerung). Am Ende bleiben in diesem Fall 68 Mio. Einwohner verschont.