Schlagwort-Archive: COP

Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen

Teil 5 der Reihe „Energiewende und Wärmepumpe“

Zusammenfassung

Über den konkret betrachteten Fall hinaus werden grundsätzliche Überlegungen zur Wirtschaftlichkeit von Wärmepumpen gegenüber Gas-Brennwertthermen angestellt. Ferner werden Wirtschaftlichkeitskriterien mit und ohne Investition sowie mit und ohne Einsatz von Photovoltaik formuliert.

Einleitung

Aus den in Teil 4 (Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung) beispielhaft durchgerechneten Fällen ergibt sich unmittelbar, dass der relevante Strompreis bzw. das Verhältnis zwischen dem Gas- und dem Strompreis die Wirtschaftlichkeit direkt bestimmt. Das gilt natürlich unabhängig vom Einzelfall ganz generell auch für andere Objekte und Wärmepumpen. Fokussiert man sich zunächst nur auf die Betriebskosten, so haben wir die folgende ganz einfache Formel zur Bestimmung des höchsten gerade noch wirtschaftlichen Strompreises:

\begin{equation} {Strompreis} < {COP} \cdot {Gaspreis} \end{equation}

In der nachfolgenden Abbildung ist der Zusammenhang grafisch aufbereitet.

© Hieronymus Fischer

Abbildung 5-1: Höchster noch wirtschaftlicher Strompreis beim Betrieb von Wärmepumpen in Abhängigkeit vom COP-Wert. Betrachtet werden hier nur die Betriebskosten im Vergleich zu einer Gasheizung (ohne eventuell erforderliche Investitionen). Bei gegebenem Wärmepumpen-COP kann man dem Diagramm unmittelbar den höchsten gerade noch wirtschaftlichen Strompreis im Vergleich zur Heizung mit Gas entnehmen. Beispiel: COP = 3, Gaspreis = 12 ct/kWh; der Strompreis darf in diesem Fall den Wert von 36 ct/kWh nicht übersteigen, andernfalls fallen die Betriebskosten höher aus als bei der Beheizung mit Gas.

Aus der Formel und dem Diagramm ergibt sich, dass eine Wärmepumpe mit einem COP-Wert von 3 bei den derzeitigen Gaspreisen zwischen 10 und 15 ct/kWh nur bei Strompreisen unterhalb von 30 bzw. 45 ct/kWh wirtschaftlich betrieben werden kann. Bei einem COP-Wert von 4 liegen die höchsten noch wirtschaftlichen Strompreise bei 40 bzw. 60 ct/kWh. Dabei muss man indessen berücksichtigen, dass in der Praxis auch noch die Investitionskosten hinzukommen. Dazu weiter unten.

Grundsätzlich entscheidet nach dem Vorstehenden der COP-Wert darüber, ob eine gegebene Kombination von Strom und Gaspreisen überhaupt einen wirtschaftlichen Betrieb der Wärmepumpe erlaubt. In der nachfolgenden Abbildung ist das exemplarisch für einen COP-Wert von 3,5 dargestellt.

Wirtschaftlichkeitskriterium ohne Berücksichtigung der Investitionen

Die Frage der Wirtschaftlichkeit steht immer in Zusammenhang mit den möglichen Alternativen. Es macht Sinn, diesbezüglich insbesondere den Vergleich mit der Gasheizung in den Blick zu nehmen. Selbstverständlich wäre es in gleicher Weise möglich, stattdessen oder auch zusätzlich andere Energieträger zu betrachten, z.B. Öl- oder Pelletheizungen. Wir fokussieren uns hier auf Gas. Die prinzipiellen Beziehungen sind indessen auch im Vergleich zu jeder anderen Alternative gültig.

© Hieronymus Fischer

Abbildung 5-2: Wirtschaftlichkeit von Wärmepumpen in Abhängigkeit vom Verhältnis Strompreis zu Gaspreis. Betrachtet werden hier nur die Betriebskosten im Vergleich zu einer Gasheizung (ohne die erforderlichen Investitionen und ohne Eigenstromnutzung von einer evtl. vorhandenen Photovoltaik-Anlage).

Die allgemeine Wirtschaftlichkeitsbedingung lautet:

\begin{equation} COP > \frac{Strompreis}{Gaspreis} \end{equation}

Wirtschaftlichkeitsbetrachtung für die praxisrelevanten COP-Werte

Entscheidend für die Wirtschaftlichkeit ist also der effektive Wärmepumpen-COP in der Relation zum Verhältnis Strompreis zur Gaspreis. Im nachfolgenden Diagramm wird das im Hinblick auf die praktische Anwendung nochmals grafisch hervorgehoben.

© Hieronymus Fischer

Abbildung 5-3: Wirtschaftlichkeit von Wärmepumpen in Abhängigkeit vom Verhältnis Strompreis zu Gaspreis. Betrachtet werden hier nur die Betriebskosten im Vergleich zu einer Gasheizung (ohne die erforderlichen Investitionen und ohne Eigenstromnutzung von einer evtl. vorhandenen Photovoltaik-Anlage).

Die meisten Wärmepumpen arbeiten in der Praxis mit einem COP-Wert zwischen etwa 2,5 und 4,5. Nach einer Fraunhofer-Studie aus 2022 (s. [8]) liegen die COP-Werte in Bestandsgebäuden bei einem Mittelwert von 3,1. Daher ist die in Teil 3 (CO2-Emissionen von Gasheizung und Wärmepumpe? Vergleich für ein Bestandsgebäude) und Teil 4 (Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung) durchgeführte Berechnung auf Basis eines exemplarischen COP von 3 absolut realitätsnah. Der gelbe Keil im Diagramm markiert den interessierenden Bereich zwischen COP 3 und COP 4.

Da also die praxisbezogenen COP-Werte vielfach zwischen etwa 3 und 4 liegen, sind Wärmepumpen i.A. unwirtschaftlich, sofern der Strompreis mindestens viermal höher ist als der Gaspreis (rot markierter Bereich in der Grafik). Umgekehrt ist die Wirtschaftlichkeit meist gegeben, wenn der Strompreis maximal etwa dreimal höher ist als der Gaspreis (grün eingefärbter Bereich). Im dazwischenliegenden keilförmigen Bereich (gelb hervorgehobenen) muss man genau vergleichen, wie der reale COP in Relation zum Verhältnis Strompreis zu Gaspreis liegt.

Das ist die Beurteilung ohne Berücksichtigung der Investitionen die indes durchaus erheblich sein können, wie wir in Teil 4 (Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung) gesehen haben.

Wirtschaftlichkeitskriterium mit Berücksichtigung der Investitionen

Sofern man auch die Investitionskosten ins Kalkül nehmen will, muss man die beiden gestrichelten Geraden von Abb. 5-3 in Abhängigkeit von der Höhe der Kosten und der angenommenen Betriebszeit parallel nach unten verschieben. Im Ergebnis wird damit der Wirtschaftlichkeitsbereich (im Diagramm grün eingefärbt) weiter beschnitten und der Übergangsbereich eingeengt.

© Hieronymus Fischer

Abbildung 5-4: Wirtschaftlichkeit von Wärmepumpen in Abhängigkeit vom Verhältnis Strompreis zu Gaspreis unter Berücksichtigung der Betriebskosten und der Investitionen (ohne Eigenstromnutzung von einer vorhandenen Photovoltaik-Anlage). Die Investitionskosten wirken wie eine Parallelverschiebung der betreffenden durch den COP-Wert bestimmten Grenzgeraden nach unten. Dadurch schrumpft der Wirtschaftlichkeitsbereich. D.h., beim gleichen Gaspreis sinkt der maximal noch ökonomische Strompreis.

Mit den Definitionen

\begin{align} S &= Strompreis \,\, \text{[Euro]} \notag \\ G &= Gaspreis \,\, \text{[Euro]} \notag \\ I_{WP} &= Investition \,\, \text{[Euro]} \\ N &= Betriebsdauer \,\, \text{[Jahre]} \notag \\ V_H &= Heizenergieverbrauch \,\, \text{[kWh/Jahr]} \notag \end{align}

lautet daher das erweiterte Wirtschaftlichkeitskriterium unter Einbeziehung der Investitionen:

\begin{equation} COP > \frac{S}{G\, – \frac{I_{WP}}{N \cdot V_H}} \end{equation}

Präzise formuliert ist \(I_{WP}\) die Zusatzinvestition für die Wärmepumpe gegenüber der Gasheizung.

Das vorstehende Kriterium ergibt sich aus der unmittelbar einleuchtenden Relation

\begin{equation}  \frac{S}{COP} \cdot V_H + \frac{I_{WP}}{N} < G \cdot V_H \end{equation}

Das Wirtschaftlichkeitskriterium bei Solarstromnutzung

Wir vernachlässigen die Betriebskosten der Photovoltaikanlage und bezeichnen die Höhe des PV-Anteils am erforderlichen Wärmepumpenstrom mit \(p = p_{Solar}\). Die Eigenstromnutzung wirkt im Hinblick auf die Wirtschaftlichkeit wie eine Strompreisreduzierung um den Anteil \(p\). Das Wirtschaftlichkeitskriterium wird daher zu

\begin{equation} COP > \frac{S \cdot \left ( 1 – p \right ) }{G \, – \frac{I_{WP}}{N \cdot V_H}} \end{equation}

Man kann das auch dahingehend interpretieren, dass der PV-Anteil zu einer hypothetischen Steigerung des COP-Wertes der Wärmepumpe führt. Bei einem PV-Anteil von 1/3 erhöht sich der COP-Wert fiktiv um 50 %, z.B. von 3 auf 4,5.

Das finale Wirtschaftlichkeitskriterium

Das Kriterium kann noch etwas eleganter formuliert werden, wenn man die Höhe der erforderlichen Zusatzinvestitionen \(I_{WP}\) auf die Anzahl der Betriebsjahre umrechnet und in Einheiten der jährlichen Heizenergiekosten (mit Gas) ausdrückt. Für den solchermaßen definierten Investitionsquotienten \(q = q_{Invest}\) gilt folglich

\begin{equation} q =\frac{I_{WP}}{N \cdot G \cdot V_H} \end{equation}

Damit erhalten wir das finale Wirtschaftlichkeitskriterium:

\begin{equation} COP > \frac{S}{G} \cdot \frac {1 – p}{1 – q} \end{equation}

Der Quotient rechts gibt an, um welchen Faktor der COP-Wert der Wärmepumpe größer sein muss bzw. kleiner sein darf als das Verhältnis Strompreis zu Gaspreis. In dieser Form ist daher das Kriterium generisch auf jede Preiskonstellation mit und ohne Solarstromnutzung sowie mit und ohne Berücksichtigung von Investitionen unmittelbar anwendbar.

In Abb. 5-5 wird die Wirkung der Formelbeziehung beispielhaft erläutert.

© Hieronymus Fischer

Abbildung 5-5: Exemplarische Kurvenschar zum finalen Wirtschaftlichkeitskriterium. Zu einem gegebenen Gaspreis gibt das Diagramm für unterschiedliche Strompreise und Investitionsquotienten q = q_Invest sowie PV-Eigenstromanteile p = p_Solar den jeweils minimal erforderlichen COP-Wert der Wärmepumpe an. Die beispielhaft hervorgehobenen Gas-/Strompreis-Kombinationen 15/30 (grün) und 20/50 (rot) sind im Diagramm erläutert. Der linke braune Kreis markiert die Kombination Gaspreis = 10 ct/kWh, Strompreis = 40 ct/kWh bei einem Investitionsquotienten q = 10 % und einem Solarstromanteil p = 20 %. Der rechte braune Kreis steht beim gleichen Strompreis und dem gleichen Solarstromanteil für die Kombination mit dem Gaspreis = 15 ct/kWh und dem höheren Investitionsquotienten q = 50 %.

Der Darstellung kann man entnehmen, welch starken Einfluss die Größe des Investitionsquotienten hat. Bei einem Gaspreis von 20 ct/kWh ist die Wärmepumpe unter Vernachlässigung der Investitionen bereits mit einem COP-Wert von 2,5 wirtschaftlich (untere rote Markierung bei 20). Sofern der Investitionsquotient 50 % beträgt, ist schon ein COP-Wert von 5 erforderlich. Dieser negative Effekt kann indessen durch einen entsprechend hohen Solarstromanteil kompensiert werden. Das sieht man z.B. bei den grünen Markierungen (Gaspreis 10 ct/kWh, Strompreis 30 ct/kWh). Der im Falle der gestrichelten grünen Linie höhere Solarstromanteil von 30 % führt bei gleichem Invest zu einer Verringerung des nötigen COP-Wertes von 2,86 auf 2,0.

Generische Formulierung des Wirtschaftlichkeitskriteriums

In der formulierten Ökonomiebedingung sind letztlich nur drei Größen relevant: Das Verhältnis Strompreis zu Gaspreis, der Investitionsquotient q und der Solarstromanteil p. Das kann man dazu nutzen, den Zusammenhang mit dem COP-Wert ohne direkten Bezug auf den Gas-und Strompreis kompakt in einem Diagramm darzustellen.

In der Praxis wird man sich dabei die Frage stellen, um welchen Prozentanteil der COP-Wert ggf. höher ausfallen muss (Aufschlag zum COP), bzw. niedriger sein darf (Abschlag vom COP) als der Vergleichswert bei q = 0 und p = 0. Das kommt in der Beziehung

\begin{equation} \Delta COP_{rel} = \frac {q\, – p}{1 – q} \end{equation}

zum Ausdruck, wobei

\begin{equation} \Delta COP_{rel} = \frac{COP}{\frac{S}{G}} – 1\end{equation}

Die Bedingung lautet somit

\begin{equation} COP > \left( 1 + \Delta COP_{rel} \right) \cdot \frac{S}{G} \end{equation}

Im nachfolgenden Diagramm ist der Verlauf von \(\Delta COP_{rel}\), also die relative Änderung des \(COP\) in Abhängigkeit vom Investitionsquotienen q für verschiedene Solarstromanteile p dargestellt.

© Hieronymus Fischer

Abbildung 5-6: Exemplarische Kurvenschar zum generischen Wirtschaftlichkeitskriterium. Auf der x-Achse ist der Investitionsquotient q = q_Invest aufgetragen. Für vier unterschiedliche PV-Eigenstromanteile p = p_Solar sind die entsprechenden Kurvenverläufe eingezeichnet. Beispiel: Gelber Kreis bei der Kurve mit dem Solarstromanteil p = 35 % und dem Investitionsquotienten q = 60 %. In diesem Falle muss der COP-Wert um mindestens 62,5 % höher sein als das Verhältnis Strompreis zu Gaspreis.

Das Diagramm macht deutlich, wie die Investitionskosten und die mögliche Solarstromnutzung zusammenwirken. Höhere Investitionsquotienten führen schnell zu merklichen Aufschlägen auf den erforderlichen Mindest-COP-Wert. Abgemildert wird das nur durch entsprechend größere Nutzungsanteile beim Solarstrom. Diese ungünstige Auswirkung der Investitionen kann sogar umgedreht werden. Das sieht man exemplarisch im Falle der orangefarbenen Markierung. Bei einem Investitionsquotienten q = 40 % und einem Solarstromanteil p = 50 % erhält man im Ergebnis eine Minderung des minmal erforderlichen COP-Wertes von 17 %. Konkret wäre so z.B. auch ein COP von 2,49 bei einem Strom-/Gaspreisverhältnis von 3:1 noch hinreichend (2,49 = 3*(1-0,17)).

Diskussion zur Wirtschaftlichkeit

Den vorstehenden Formelbeziehungen entnimmt man ohne Weiteres, dass eine kürzere Betriebsdauer in die selbe Richtung wirkt, wie eine höhere Investition und daher zu einer Parallelverschiebung der Grenzgeraden nach unten führt. Im Ergebnis schrumpft demnach auch in diesem Falle der Bereich wirtschaftlicher Strom-Gaspreis-Kombinationen hin zu kleineren Strom- bzw. höheren Gaspreisen.

Völlig analog verhält es sich, wenn der Jahresverbrauch sinkt. Wir haben daher die scheinbar paradoxe Situation, dass die Wärmepumpe umso weniger wirtschaftlich ist, je kleiner die Jahresverbräuche ausfallen. Das ist natürlich nur auf den ersten Blick ein Widerspruch, denn begreiflicherweise fallen bei einem niedrigeren Verbrauch die Investitionen stärker ins Gewicht während zugleich das Einsparpotential auf Seiten der Betriebskosten immer geringer wird.

Grenzbetrachtung für verschwindende Stromkosten

Bei gegebenen Werten für den Gaspreis, die Betriebsdauer der Wärmepumpe und den Jahresverbrauch erhalten wir das folgende Kriterium für die Höhe der im Grenzfall verschwindender Stromkosten (also Strompreis = 0) gerade noch wirtschaftlichen Grenzinvestitionssumme \(I_{WP_{Grenz}} \):

\begin{equation} I_{WP_{Grenz}} =  G \cdot N \cdot V_H\end{equation}

Beispiel: Gaspreis = 12 ct/kWh, Jahresverbrauch = 10.000 kWh, Betriebsdauer = 20 Jahre, Grenzinvestition = 24.000 €. Bei einem Jahresverbrauch von 20.000 kWh ist die Grenzinvestition mit 48.000 € doppelt so hoch. Wohlgemerkt, das gilt bei einem hypothetischen Strompreis von 0 bzw. bei einem PV-Anteil von 100 % (respektive einem unendlich hohen COP-Wert).

Grenzbetrachtung für reale Stromkosten

Bei gegebenem Strompreis > 0 und realem COP-Faktor liegt die wirtschaftlich gerade noch vertretbare rechnerische Grenze für die Höhe des Investitionsbetrags bei

\begin{equation} I_{WP_{Grenz}} = \left ( G – \frac{ 1 -p} {COP} \cdot S \right ) \cdot N \cdot V_H \end{equation}

Beispiel: Gaspreis = 12 ct/kWh, Strompreis 30 ct/kWh, PV-Anteil = 0 %, Jahresverbrauch = 10.000 kWh, Betriebsdauer = 20 Jahre, Grenzinvestition = 4.000 €. Bei einem Jahresverbrauch von 20.000 kWh kommt die Grenzinvestition mit 8.000 € wieder doppelt so hoch. Erhöht sich der Strompreis auf 42 ct/kWh, so sinkt dadurch die hypothetische Grenzinvestition auf -8.000 €, es wird also bereits signifikant unwirtschaftlich.

Wann sich Investitionen definitiv nicht lohnen

Im Grenzfall

\begin{equation} COP = \left ( 1 – p \right ) \cdot \frac{S}{G} \end{equation}

verbieten sich aus wirtschaftlicher Sicht jegliche Investitionen, da die rechnerische Grenzinvestition \(I_{WP_{Grenz}} \) in der Formel null wird. Bei noch kleineren COP-Werten wird sie sogar negativ.

Die exemplarischen Fälle im weiteren Kontext

Mit dem vorgestellten Rüstzeug können wir nun die Wirtschaft­lichkeits­betrachtung für die durchgerechneten Bespielfälle aus Teil 4 (Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnu) mit und ohne Investition sowie mit und ohne PV-Stromnutzung zusammenfassend darstellen.

Abbildung 5-7: Wirtschaftlichkeitsbetrachtung für die in Teil 4 (Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung) durchgerechneten Bespielfälle mit und ohne Investition sowie mit und ohne PV-Stromnutzung. Die Positionen der bespielhaft betrachteten Gas-/Strompreis-Kombinationen 10/25, 12/40, 15/45 und 20/50 ct pro kWh sind mit den entsprechend den obigen Diagrammen (s. Abb. 4-4 bis 4-12) eingefärbten Quadraten markiert. Rot dargestellt ist der Bereich der in jedem Falle unwirtschaftlichen Gas-Strom­preis-Kombinationen. Der grüne Bereich rechts unten zeigt die stets – auch ohne Förderung – wirtschaftlichen Gas-/Strom­preis­-Kombinationen.

Die Bedeutung der in Abb. 5-7 eingetragenen Kurven ist im Diagramm erläutert. Z.B. trennt die gestrichelte Linie („Wirtschaftlich ohne Invest“) die wirtschaftlich sinnvollen (unterhalb) von den unwirtschaftlichen Strom- und Gaspreisen (oberhalb der Linie) unter ausschließlicher Betrachtung der Betriebskosten (ohne Invest). Die grüne Kurve mit den gelben Kreisen steht für die Trennlinie zwischen den ökonomischen (unterhalb der Linie) und den geschäftlich nachteiligen (oberhalb der Linie) Strom- und Gaspreiskombinationen unter Berücksichtigung der Betriebskosten einschließlich der Investitionen und der BAFA-Förderung.

Diskussion zur Wirtschaftlichkeitsanalyse

Mit Blick auf Abb. 5-7 zeigt sich die Gas-/Strompreis­-Kombination 10/40 ct/kWh klar als unwirtschaftlich, 20/30 ct/kWh dagegen klar als wirtschaftlich. Wie man dem Diagramm ebenfalls entnehmen kann, waren bei den bis 2021 geltenden niedrigen Gaspreisen von 5 – 6 ct/kWh Wärmepumpen i. A. keine sinnvolle Investition, da zugleich die Strompreise bei mindestens 25 ct/kWh, also dem 4- bis 5-fachen davon lagen. Allenfalls waren reine Wärmepumpenstromtarife, die teilweise mit etwa 15 ct/kWh berechnet wurden bei ausschließlicher Betrachtung der Betriebskosten von Interesse.

Wie in der Grafik unschwer zu erkennen, liegt das gelbe Quadrat, das der Gas-/Strompreiskombination 12/40 ct/kWh entspricht, oberhalb aller eingezeichneten Geraden im roten Bereich der unwirtschaftlichen Gas- und Strompreise. Damit ist die aktuelle Gas-Strompreisbremse für eine Wärmepumpe mit einem COP von 3 in keinem Falle wirtschaftlich. Das gilt sogar ohne Berücksichtigung der Investitionskosten und bei PV-Stromnutzung. Damit ist weder die betrachtete Wärmepumpe ohne PV (durchgezogene grüne Gerade), noch mit PV (grüne, mit gelben Kreisen markierte Linie) wirtschaftlich zu betreiben.

Vorteilhafte Gas-/Strompreis-Kombinationen

Nur wenig besser sieht es aus für die Gas-/Strompreis-Kombination 15/45 ct/kWh (grünes Quadrat). Die Wirtschaftlichkeit ohne Berücksichtigung der Investitionen ist knapp gegeben (das Quadrat liegt knapp unter der gestrichelten Linie). Desgleichen gibt es ein Einsparungspotential in Bezug auf die geförderte Variante „Wärmepumpe mit PV“, da das Quadrat unterhalb der durchgezogenen grünen und mit gelben Kreisen markierten Geraden positioniert ist. Im Hinblick auf alle anderen Alternativen, „Wärmepumpe ohne PV“, sowie die nicht geförderten Varianten „Wärmepumpe mit PV“ und „Wärmepumpe ohne PV“ wird die Wirtschaftlichkeit klar verfehlt.

Etwas günstiger ist die Situation im Falle der Gas-/Strompreis-Kombination 10/25 ct/kWh (blaues Quadrat). Auch dieser Fall ist ökonomisch vernünftig bezüglich der reinen Betriebskosten und in Bezug auf die geförderte Alternative „Wärmepumpe mit PV“ inkl. der Investitionen (das blaue Quadrat liegt unterhalb der gestrichelten sowie der grünen Gerade mit Sonnensymbolen). Bezüglich der anderen geförderten Alternative, „Wärmepumpe ohne PV“ sowie der beiden nicht geförderten Varianten „Wärmepumpe mit PV“ und „Wärmepumpe ohne PV“ ist es indessen ein mehr oder weniger klares Draufzahlgeschäft.

Die beste wirtschaftliche Beurteilung kommt der Gas-/Strompreis-Kombination 20/50 ct/kWh (orangefarbenes Quadrat) zu. Diese Preisverortung ist akzeptabel sogar hinsichtlich der nicht geförderten Alternative „Wärmepumpe mit PV“ (durchgezogene dunkle Gerade, mit Sonnensymbolen markiert) und knapp positiv im Hinblick auf die geförderte Wärmepumpe ohne PV-Stromnutzung (blassgrüne Gerade). Einzig die nicht geförderte Variante „Wärmepumpe ohne PV“ (durchgezogene dunkle Gerade an der Grenze zum grünen Bereich) bleibt auch in diesem Falle eine ganz klar unwirtschaftliche Option.

Es hängt am Gaspreis. Und am Strompreis

Um noch zwei Beispiele herauszugreifen: Mit Blick auf Abb. 5-7 zeigt sich die Gas-/Strompreiskombination 10/40 ct/kWh als offenkundig unwirtschaftlich, 20/30 ct/kWh dagegen als eindeutig wirtschaftlich.

Aus der Diskussion ergibt sich nochmals in aller Deutlichkeit, dass die Frage pro und kontra Wirtschaftlichkeit bei gegebenem COP vor allem von den zugrunde gelegten Gaspreisen abhängt. Bei hohen Gaspreisen und halbwegs moderaten Strompreisen ist das Investment ökonomisch sinnvoll.

Sofern man keinen PV-Eigenstrom nutzen kann, sollte der Strompreis bei niedrigen Gaspreisen bis 15 ct/kWh weniger als zweimal so hoch sein als der Gaspreis. Bei höheren Gaspreisen darf der Faktor zweieinhalb kaum übersteigen. Wenn eine PV-Anlage vorhanden ist und etwa ein Drittel des Strombedarfs der Wärmepumpe darüber gedeckt werden kann, darf der Strompreis bei niedrigen Gaspreisen knapp das Dreifache erreichen. Liegt der Gaspreis darüber bei 15 bis 25 ct/kWh, sind teilweise auch Strompreise bis zum Dreieinhalbfachen des Gaspreises noch ökonomisch. Darüber hinaus dürfen die Strompreise gar das Vierfache des Gaspreises erreichen. In Abb. 5-6 ist der Zusammenhang dargestellt.

© Hieronymus Fischer

Abbildung 5-8: Wirtschaftlich sinnvolle Strom-Gaspreisverhältnisse für die durchgerechneten Beispielfälle unter Berücksichtigung der Investitionen (aus Teil 4 Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung) und der optionalen PV-Stromnutzung von ca. einem Drittel des Strombedarfs der Wärmepumpe. Die durchgezogene blaue Kurve gibt an, um welchen maximalen Faktor der Strompreis über dem Gaspreis liegen darf. Den entsprechenden Faktor bei PV-Stromnutzung zeigt die mit gelben Kreisen markierte Kurve. Die beiden gestrichelten Linien stellen die theoretischen Grenzwerte ohne Investitionen bzw. bei sehr hohen (unendlichen) Gaspreisen dar.

Bei höheren Jahresverbrauchswerten verlaufen die durchgezogenen Kurven in Abb. 5-8 steiler, bei niedrigeren flacher. Umgekehrt verhält es sich bezüglich der Investitionen. Demnach müssen bei höheren Investitionen die Strompreise niedriger ausfallen, um einen noch wirtschaftlichen Betrieb zu ermöglichen. Dasselbe trifft zu bei niedrigeren Jahresverbräuchen.

Resümee

Ist nun eine Wärmepumpe der Gasheizung vorzuziehen oder nicht? Nach dem Vorstehenden und den vorangegangenen Analysen in Teil 2 (Wärmepumpe. Prinzip, Funktionsweise und Grenzen), Teil 3 (CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude) und Teil 4 (Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung) kann man das Folgendermaßen beantworten:

Aufgrund der hohen CO2-Emission im deutschen Strommix machen Wärmepumpen ohne PV gegenwärtig wenig Sinn. Sie sind nicht schädlich, bringen aber kaum nennenswerte Einsparungen in der CO2-Emission gegenüber Gas. Einen positiven Effekt gibt es mit PV, das allerdings erfordert höhere Investitionen. Sofern künftig CO2-freier oder zumindest merklich geringer mit CO2 belasteter Strom verfügbar sein sollte, sind Wärmepumpen von Vorteil, wenn die Investitionen niedrig gehalten werden können. Bei einem Verzicht auf die Kohleverstromung sind Wärmepumpen ein wertvoller Beitrag zur Wärmewende. Auf absehbare Zeit können indessen Windkraft und Solarstrom die Kohle nicht ohne Weiteres ersetzen.

In der ökonomischen Perspektive – und die kann und darf man nicht ausblenden, wenn man das Ziel einer klimapolitischen Wirkung ernsthaft verfolgen will – sind drei Faktoren von entscheidender Bedeutung:

1. Die Höhe der erforderlichen Zusatzinvestitionen gegenüber einer Gasheizung.

2. Die Möglichkeit der Nutzung von Solarstrom.

3. Das Verhältnis Strompreis zu Gaspreis.

Sofern der auf die Anzahl der Betriebsjahre umgelegte Investitions­betrag den Bruchteil \(\frac{1}{x}\) der Jahresverbrauchskosten an Heizenergie (mit Gas) nicht überschreitet und kein Solarstrom zur Verfügung steht, genügt es, wenn der COP-Wert der Wärmepumpe um den Faktor \(\frac{x}{x-1}\) größer ist als das Verhältnis Strompreis zu Gaspreis (x = 2, 3, 4, 5, …). Ansonsten ist der Einsatz i. A. nicht wirtschaftlich. Mit einem Solarstromanteil von \(p\) gilt dasselbe für das Verhältnis des mit dem Faktor \(1-p\) multiplizierten Strompreises zum Gaspreis. Wenn die umgelegten Zusatzinvestitionen pro Betriebsjahr ungefähr die Höhe der Jahresverbrauchskosten erreichen oder gar überschreiten, ist die Wärmepumpe definitiv unwirtschaftlich. In den Fällen dazwischen muss man Formel (6) oder (8) genau auswerten.

Ausblick auf Teil 6

Ist die Wärmepumpe zum jetzigen Zeitpunkt das richtige Heizsystem für Deutschland? Macht ein Verbot bzw. ein Tauschzwang für Gasheizungen Sinn? Und ist der finanzielle Aufwand dafür unter allen Gesichtspunkten – wirtschaftlich und klimapolitisch – vernünftig?

Es wird gezeigt, dass der Einsatz von Luft-Wasser-Wärmepumpen unter den gegebenen Umständen in der großen Perspektive weder wirtschaftlich ist noch überhaupt eine nennenswerte klimapolitische Wirkung entfaltet. Darüber hinaus wird dargelegt, mit welchen Maßnahmen die CO2-Emissionen wirksam und effizient reduziert werden können.

Link: Wärmepumpen für Deutschland – Klimapolitisch sinnvoll oder Fehlinvestition?


Alle Beiträge der Reihe:

Energiewende und Wärmepumpe

1. Energiewende, Stromproduktion und CO2-Emission

2. Wärmepumpe. Prinzip, Funktionsweise und Grenzen

3. CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

4. Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung

5. Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen

6. Wärmepumpen für Deutschland – Klimapolitisch sinnvoll oder Fehlinvestition?

Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeits­rechnung

Teil 4 der Reihe „Energiewende und Wärmepumpe“

Einleitung

Ist der Umstieg von der Gasheizung auf die Wärmepumpen-Heizung wirtschaftlich sinnvoll? Hierzu wird eine konkrete Beispielrechnung für ein Bestandsgebäude (Baujahr 2000) mit einem typischen Wärmebedarf und einem akzeptablen Energiestandard (Energieeffizienzklasse C) durchgeführt. In die Betrachtung werden die bekannten Fördermaßnahmen mit einbezogen und die Wirtschaftlichkeit hinsichtlich der Betriebskosten und der Investitionen im Vergleich zu einer modernen Gas-Brennwerttherme bei unterschiedlichen Gas-/Strom-Preiskombinationen bewertet.

Konkret bezieht sich der Vergleich auf die Alternative Gas-Brennwertheizung und Luft-Wasser-Wärmepumpe mit Außenaufstellung. Andere Wärmepumpensysteme die aufwendige Erdarbeiten (Tiefenbohrung oder Verlegung von Erdschleifen) voraussetzen wurden aufgrund der hohen Zusatzkosten ausgeschlossen. Eine Innenaufstellung der Wärmepumpe konnte aufgrund der örtlichen Gegebenheiten nicht realisiert werden, sie ist in der Regel aber auch nicht kostengünstiger als die Außenaufstellung.

Einordnung in den Kontext

Wir haben in den vorhergehenden Teilen ausschließlich die Seite der Energieerzeugung und des Energieverbrauchs sowie die CO2-Emissionen in den Blick genommen. Die Kosten müssen aber ebenfalls betrachtet werden. Im Beispielfall der exemplarisch für die Kategorie von Gebäuden mit einer noch guten Energieeffizienz steht (Energieeffizienzklasse C, 75 – 100 kWh/m2a, Neubaustandard bis 2002 und Fußbodenheizung), ist die Beheizung mit Wärmepumpe unter CO2-Gesichtspunkten grundsätzlich sinnvoll (auch wenn das Einsparungspotential relativ gering ausfällt). Das ist für den kompletten Gebäudebestand in Deutschland nicht die Regel.

Nur etwa ein Drittel aller Ein- und Zweifamilienhäuser in Deutschland genügt mindestens dem Energiestandard C. Fünfzig Prozent haben eine schlechtere Energieeffizienzklasse von D bis G mit 100 – 250 kWh/m2a, weitere 15 % benötigen sogar noch mehr als 250 kWh/m2a (Energieeffizienzklasse H). Für die Mehrzahl dieser Gebäude ist davon auszugehen, dass sie für die Beheizung mit Wärmepumpe ohne vorherige energetische Sanierungsmaßnahmen nicht unmittelbar geeignet sind. Die Kosten dafür können ohne Weiteres bis in den sechsstelligen Bereich gehen. Diese Fälle wollen wir außer acht lassen und uns auf das relativ „gutartige“ Beispielhaus fokussieren, für das in Teil 3 (CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude) schon die CO2-Betrachtung vorgenommen worden war.

Ausgangsbedingungen

Die Aufwand für die Installation einer Wärmepumpe beläuft im Falle des Beispielhaues auf ca. 45.000 €. Der Grund dafür ist u. a. die nötige aufwendige Installation der Zuleitungen für die Wärmepumpe, die  – wie bei Luft-Wasser-Wärmepumpen die Regel – außerhalb des Hauses aufgestellt werden muss. Abzüglich der BAFA-Förderung von 35 % verbleiben 29.250 € als Nettoinvestition. Im Vergleich dazu kommt eine neue Gasbrennwerttherme inkl. Warmwasserspeicher mit Frischwasserstation und Steuerung auf 17.500 €. Das sind folglich 11.750 € weniger.

© Hieronymus Fischer

Abbildung 4-1: Investitionskosten für Wärmepumpe, Gas-Brennwerttherme und Photovoltaik.

Da wir in Teil 3 (CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude) auch die Eigennutzung von Solarstrom mit ins Kalkül genommen haben, seien auch die diesbezüglichen Kosten kurz genannt: PV-Anlage mit 5,5 kWp inklusive 7 kWh Batteriespeicher für zusammen 10.000 €. In der Kostenbetrachtung berücksichtigen wir diese Investition nur entsprechend des jeweiligen Nutzungsanteils (35 % im Hinblick auf die Wärmepumpe, 20 % in Hinblick auf die Warmwasseraufbereitung in Verbindung mit der Gastherme), da die PV-Anlage auch ganz unabhängig von der Heizmethode einen wirtschaftlichen Nutzen generiert.

Die Alternativen

© Hieronymus Fischer

Abbildung 4-2: Gegenüberstellung der Alternativen mit ihren Beschaffungs- und Installationskosten. Die blauen Säulen zeigen die Investitionskosten für die Gasheizung, in den gelben Säulen darüber sind jeweils die Zusatzinvestitionen für die unterschiedlichen Alternativen ausgewiesen. Die resultierenden Gesamtkosten finden sich ganz oben. In den beiden mittigen Säulen „Wärmepumpe ohne PV“ und „Wärmepumpe mit PV“ ist die BAFA-Förderung in Höhe von 35 % der Gesamtinvestition bereits abgezogen, wobei zu berücksichtigen ist, dass die PV-Anlage hier nicht gefördert wird. Die beiden rechten Säulen „Wärmepumpe ohne PV (o. Förderung)“ und „Wärmepumpe mit PV (o. Förderung)“ markieren die Extremfälle ohne Förderung und wurden zu Vergleichszwecken mit aufgenommen.

Nehmen wir diese Zahlen als Grundlage für die weiteren Betrachtungen. Dazu kommen natürlich auch die Vergleiche betreffend der Betriebskosten. Diese liegen derzeit bei 12 ct/kWh für den Bezug von Gas und bei 40 ct/kWh für Strom. Ohne die Strom- und Gaspreisbremse lag im ersten Quartal 2023 der Strompreis bei 30 – 60 ct/kWh und der Gaspreis im Bereich zwischen 10 – 20 ct/kWh. Aktuell (Mai 2023) sind die Gaspreise teilweise auf unter 10 ct/kWh gefallen. Beim Strom liegen die günstigsten Tarife bei knapp über 30 ct/Wh.

Variation der Gas- und Strompreise

Um die Unschärfen bezüglich der Preisgestaltung zu berücksichtigen, werden wir in der beispielhaften Modellrechnung mit unterschiedlichen Gas-/Strom-Preiskombinationen kalkulieren. Die Zahlengrundlagen für die Berechnungen sind in den Grafiken zusammenfassend dargestellt (s. Abbildungen 4-1, 4-2 und 4-3).

© Hieronymus Fischer

Abbildung 4-3: Exemplarische Strom- und Gaspreise für die nachfolgenden Betriebskostenrechnungen.

Betriebskosten pro Jahr (ohne Investitionen)

Zunächst betrachten wir die jährlichen Betriebskosten für alle sechs Alternativen ohne Berücksichtigung der Investitionen. Aus letzterem Grund sind die jährlichen Kosten für die Alternativen mit und ohne BAFA-Förderung gleich. Die beiden Alternativen ohne BAFA-Förderung wurden hier nur aus Gründen der Vergleichbarkeit mit den weiteren Diagrammen aufgenommen.

Die sich auf Basis der vorgenannten Annahmen ergebenden Betriebskosten sind in Abb. 4-4 dargestellt. Aufgrund der Annahmen über die jeweiligen Strom- und Gaspreise variieren die Kosten bei allen Alternativen im Verhältnis 1:2. Man sieht sofort, dass die Alternative „Wärmepumpe mit PV (inkl. Förderung durch die BAFA)“ die günstigen Betriebskosten nach sich zieht. Sie liegen nur halb so hoch wie die Gasheizung. Dabei ist sogar die Variante „Wärmepumpe ohne PV (inkl. Förderung durch die BAFA)“ im Vergleich zur Gasheizung auch schon relativ günstig. Abhängig von der Preiskonstellation Gas/Strom  bringt auch die Variante Gasheizung mit Warmwasseraufbereitung mittels PV-Strom schon gewisse Einsparpotentiale („Gas-Brennwerttherme mit Heizstab und PV“).

© Hieronymus Fischer

Abbildung 4-4: Vergleich der jährlichen Betriebskosten (ohne Investitionen) für die betrachteten Alternativen bei unterschiedlichen Gas-/Strom-Preiskombinationen.

Die Unterschiede in den Betriebskosten pro Jahr (ohne Investitionen)

In Abb. 4-5 zeigt explizit die jährlichen Betriebskostenunterschiede der Alternativen. Die Sparpotentiale gegenüber Gas gehen bis zu 1.800 € pro Jahr. Wie nicht anders zu erwarten, bestehen die größten Unterschiede zu den Betriebskosten mit Gas dann, wenn der Gaspreis hoch und der Strombedarf wegen der Nutzung von PV-Strom vergleichsweise klein ist. Das ist der Fall für die Variante(n) „Wärmepumpe mit PV“. Ungünstiger ist die Konstellation bei niedrigem Gaspreis und gleichzeitig hohem Strompreis ohne die PV-Nutzung. Bei der aktuellen Strom- und Gaspreisbremse haben wir genau diese Situation. Im Ergebnis sind daher die Betriebskosten mit Wärmepumpe (ohne PV) höher als mit Gas (s. Abb. 4-5, Gas-/Strompreis 12/40 [gelbe Säulen], jährliche Betriebskosten +260 € im Vergleich zu Gas).

© Hieronymus Fischer

Abbildung 4-5: Abweichungen in den jährlichen Betriebskosten im Vergleich zur Gastherme bei unterschiedlichen Gas-/Strom-Preiskombinationen.

Betriebskosten pro Jahr (inkl. Investitionen)

Natürlich fehlen in dieser Sicht noch die Investitionskosten. Wir haben oben gesehen, dass die daraus resultierenden Mehrkosten im Vergleich zur Gastherme bis zu 15.250 € betragen können, ohne Förderung sogar bis zu 31.000 € (s. Abb. 4-2). Es liegt nahe, bezüglich dieser Rechnung einen Betrachtungszeitraum von 20 Jahren zu wählen, da zu erwarten ist, dass sowohl eine Gastherme als auch eine Wärmepumpe über diesen Zeitraum hinweg ohne größere Ausfälle betrieben werden kann. Wartungskosten, die dabei sicher anfallen, wollen dabei außen vor lassen, weil man davon ausgehen kann, dass diese, trotz der Unterschiedlichkeit der Systeme, nicht wesentlich verschieden sein werden.

In der nachfolgenden Grafik (s. Abb. 4-6) sind die effektiv anfallenden Kosten pro Jahr inklusive der Investitionen dargestellt. Aufgrund der Anfangsinvestitionen fallen die Unterschiede zwischen Gas-Strompreis-Kostenszenarien nicht mehr ganz so krass aus, sind aber immer noch hoch. Wie schon bei der reinen Betriebskostenbetrachtung (also ohne Investition) bleibt auch hier die Variante „Wärmepumpe mit PV“ (inkl. BAFA-Förderung) in den jährlichen Gesamtkosten am unteren Ende. Nicht unerwarteterweise fallen bei allen vier betrachteten Preiskombinationen die höchsten Kosten für die Lösung „Wärmepumpe ohne PV“ (ohne BAFA-Förderung) an. Die Unterschiede liegen bei bis zu 1.800 € im Preisgefüge 12/40 ct/kWh und bei bis zu etwa 1.700 € bei 15/45 bzw. 20/50 ct/kWh. Wenn man den Vergleich auf die WP-Varianten mit Förderung beschränkt, so liegen die Differenzen bei etwa knapp 1.000 €.

© Hieronymus Fischer

Abbildung 4-6: Vergleich der jährlichen Betriebskosten unter Berücksichtigung der erforderlichen Investitionen für die betrachteten Alternativen bei einer angenommen Betriebsdauer von 20 Jahren und unterschiedlichen Gas-/Strom-Preiskombinationen.

Die Unterschiede in den Betriebskosten pro Jahr (inkl. Investitionen)

Die Unterschiede in den effektiven Betriebskosten sind in Abb. 4-7 zusammenfassend dargestellt Die Variante „Wärmepumpe ohne PV“ (mit BAFA-Förderung) birgt – abgesehen von der Preiskombination 20/50 ct/kWh – kein wirtschaftliches Potential. Dagegen ist die „Wärmepumpe mit PV“ (inkl. BAFA-Förderung) ganz klar ein lohnendes Investment, jedenfalls dann, wenn man die Gas -und Strompreisbremse in der Kombination 10/40 ct/kWh außen vor lässt.

Man entnimmt Abb. 4-7, wie wichtig die BAFA-Förderung letzten Endes ist. Die Varianten ohne Förderung generieren jedenfalls deutliche Mehrkosten im Vergleich zu allen anderen Optionen, die das hypothetische Investment letztlich unattraktiv machen würde. Nur bei hohen Gas- und in der Relation dazu niedrigen Strompreisen bei gleichzeitiger PV-Stromnutzung wäre Licht am Ende des Tunnels zu sehen (s. rechte Rubrik in Abb. 4-7, „Wärmepumpe mit PV“ (ohne BAFA-Förderung).

© Hieronymus Fischer

Abbildung 4-7: Unterschiede in den jährlichen Betriebskosten im Vergleich zur Gastherme unter Berücksichtigung der jeweils erforderlichen Investitionen für die betrachteten Alternativen bei einer angenommen Betriebsdauer von 20 Jahren und unterschiedlichen Gas-/Strom-Preiskombinationen.

Gesamtaufwendungen über 20 Jahre Betriebszeit

Über die komplette erwartete Betriebsdauer von 20 Jahren ergeben sich erhebliche Gesamtaufwendungen, die je nach technischer Lösung und unterstellter Preiskombination von knapp 55.000 bis zu über 111.000 € betragen können. Das zeigt noch einmal, dass es lohnenswert ist, sich die Alternativen genau anzusehen.

© Hieronymus Fischer

Abbildung 4-8: Vergleich der Gesamtaufwendungen (Investition plus Betriebskosten) für die betrachteten Alternativen bei einer angenommen Betriebsdauer von 20 Jahren und unterschiedlichen Gas-/Strom-Preiskombinationen.

Durchschnittsverdiener und sogar gut verdienende Angestellte werden hier im Zweifel ein Bruttojahresgehalt und mehr aufwenden müssen. Auch die Unterschiede zwischen den Optionen sind erheblich, wie man Abb. 4-8 unschwer entnehmen kann. Letzten Endes hängt auch viel an der Preiskonstellation von Strom und Gas. Abbildung 4-9 im folgenden Abschnitt macht das deutlich.

Gesamtaufwendungen in der Relation und ein erstes Resümee

© Hieronymus Fischer

Abbildung 4-9: Prozentuale Abweichungen der Gesamtaufwendungen über 20 Jahre bezogen auf die Referenzheizung Gas bei unterschiedlichen Gas-/Strom-Preiskombinationen.

Die Gesamtaufwendungen im Vergleich zur Gas-Brennwerttherme variieren zwischen +50 % für die „Wärmepumpe ohne PV (o. Förderung)“ und -22 % für die „Wärmepumpe mit PV“ (inkl. BAFA-Förderung). Lässt man die nicht geförderten Varianten außen vor, so liegt die Spannbreite immer noch zwischen +26 % („Wärmepumpe ohne PV“, inkl. BAFA-Förderung) und -22 % für die „Wärmepumpe mit PV“ und Förderung. Da wir hier über Gesamtkosten von knapp 58.000 bis zu 98.000 € reden, liegt demnach auch das Mehraufwendungs- bzw. Einsparungspotential bei über 20.000 €.

Man erkennt spätestens an dieser Stelle klar, dass eine Wärmepumpe ohne PV-Stromnutzung im vorliegenden Fall wenig Sinn macht.

Um das in aller Schärfe herauszuarbeiten, betrachten wir nun noch die potentielle Rendite der Zusatzinvestition gegenüber einer Gas-Brennwerttherme.

Rendite der Zusatzinvestition

Die Darstellung (s. Abb. 4-10) zeigt, welche Optionen unter wirtschaftlichen Gesichtspunkten interessant sind.

© Hieronymus Fischer

Abbildung 4-10: Gesamtrendite der Zusatzinvestitionen gegenüber der Referenzheizung Gas bei unterschiedlichen Gas-/Strom-Preiskombinationen.

Umgerechnet auf die jährliche Rendite ergibt sich das in Abb. 4-11 präsentierte Bild: Die höchste Rendite hat die Variante Gasheizung mit Heizstab. Das liegt vor allem an dem niedrigen Zusatzinvestment bei gleichzeitig kostenloser PV-Stromnutzung. Ansonsten ist der relative Ertrag dann hoch, wenn der Gaspreis in Richtung 20 ct/kWh geht. Tatsächlich sind für die Gas-/Strompreiskombination 20/50 (orange) die Renditen bei allen Optionen am höchsten und fallen fast durchweg positiv aus – mit der einzigen Ausnahme „Wärmepumpe ohne PV“ (ohne Förderung). Im Vergleich der Kombinationen 10/25 (blau) und 20/50 (orange) mit dem jeweils gleichen Gas-/Strompreisverhältnis von 1:2,5, zeigt sich ebenfalls der relative Nutzen höher Gaspreise. Warum das so ist, liegt auf de Hand. Bei gleichem Zusatzinvestment gegenüber der Gasheizung steigen die Einsparungen bei einem höheren Strompreis. Der Effekt verstärkt sich nochmals bei PV-Strom-Nutzung, weil dadurch der mittlere Strompreis für die Wärmepumpe unterm Strich sinkt.

© Hieronymus Fischer

Abbildung 4-11: Jährliche Rendite der Zusatzinvestitionen gegenüber der Referenzheizung Gas über den Betrachtungszeitraum von 20 Jahren bei unterschiedlichen Gas-/Strom-Preiskombinationen.

Amortisation der Investition

Abschließend gehen wir noch auf die Amortisationsdauer ein. Auch wenn es sich bei einer Heizungsanlage um ein langfristiges Investment handelt, so wird man doch eine Amortisationszeit von höchstens 20 Jahren anstreben.

Nach dem Vorstehenden kann es nicht weiter verwundern, dass dieses Ziel nicht in jedem Falle erreicht wird. In den Abb. 4-10 und 4-11 hatten wir gegenüber der der Referenz Gas-Brennwertheizung bei einigen Varianten eine negative Rendite über den Betrachtungszeitraum von 20 Jahren errechnet. Bei einem negativen Ertrag ergibt sich natürlich keine Amortisation. Dem nachfolgenden Balkendiagramm kann man die resultierenden Amortisationszeiten entnehmen.

© Hieronymus Fischer

Abbildung 4-12: Amortisationsdauer der Zusatzinvestitionen gegenüber der Referenzheizung Gas bei unterschiedlichen Gas-/Strom-Preiskombinationen.

Diskussion zur Amortisationsdauer

Die kürzesten Amortisationszeiten ergeben sich für die die Gas-Brennwerttherme mit Heizstab und PV. Sie liegen zwischen knapp 5 Jahren bezüglich der Gas-/Strompreiskombination 10/50 (orange) und knapp 10 Jahren bei Preiskombination 10/25 (blau). Es wird in diesem Fall ausschließlich der kostenlose PV-Strom genutzt, daher steigen die Amortisationsbeiträge proportional zu den Strompreisen. Die Variante „Wärmepumpe mit PV“ (inkl. BAFA-Förderung) zeigt für drei der vier betrachteten Preiskombinationen ebenfalls noch günstige Amortisationszeiten von unter 20 Jahren. Lediglich für den Fall der Gas-Strompreisbremse 12/40 ct pro kWh (gelb) ergibt sich ein höherer Wert von 23,8 Jahren, was man schon für kritisch halten muss.

Nur in zwei weiteren Fällen überhaupt liegt die Amortisationszeit unterhalb von 20 Jahren, beides Mal für die Gas-/Strompreiskombination 20/50 (orange): einmal für die Variante „Wärmepumpe ohne PV“ (inkl. BAFA-Förderung) mit 17,4 Jahren und zum anderen für die Variante „Wärmepumpe mit PV“ (ohne Förderung) mit 17,2 Jahren. An diesem letzten Vergleich erkennt man nochmals den hohen Nutzen einer PV-Anlage für den Wärmepumpenbetrieb. Die „Wärmepumpe mit PV“ – ohne Förderung – amortisiert sich in etwa der gleichen Zeitdauer, wie die betrachtete „Wärmepumpe ohne PV“ –  mit BAFA-Förderung. Dabei liegen diese beiden Fälle auf der Kostenseite sehr weit auseinander. Ein (theoretisches) Zusatzinvestment von 31.000 € im ersten Fall steht das viel geringere Investment von nur 11.750 € im zweiten Fall gegenüber.

Resümee zur Wirtschaftlichkeit

In Summe kann man festhalten, dass sich die Investition in eine geförderte Wärmepumpe mit einem COP-Wert von ungefähr 3 bei Nutzung von PV-Strom in der Größenordnung von etwa einem Drittel des Strombedarfs gegenüber einer Gas-Brennwerttherme innerhalb von 20 Jahren amortisiert, sofern die Preisentwicklung bei Gas und Strom im erwartbaren Rahmen bleibt. Bei höheren Gaspreisen und niedrigen Strompreisen lohnt sich das Investment eher. Dabei können höhere Strompreise durch die Eigenstromnutzung von einer PV-Anlage zu einem guten Teil abgefedert werden. Wenn indessen die Gaspreise eher auf dem derzeitigen Niveau von etwa 10 ct pro kWh verharren (was allerdings kaum zu erwarten ist, da zumindest der CO2-Besteuerung die Preise nach oben treiben wird) und zugleich die Strompreise auf Werte über 30 oder 40 ct pro kWh steigen bzw. nicht darunter bleiben, dann ist unter rein wirtschaftlichen Gesichtspunkten eine Gasheizung kaum schlagbar, auch nicht bei PV-Strom Nutzung.

Grenzbetrachtungen

Die Rendite des Investments in eine Wärmepumpe (inkl. PV-Anlage) ist stark abhängig von der zugrundliegenden Förderung und von den zukünftigen Gas- und Strompreisen. In den obigen Beispielen haben wir gesehen, dass die jährliche Rendite über 20 Jahre für die interessierende Variante „Wärmepumpe mit PV“ (inkl. BAFA-Förderung) zwischen etwa -1 % und +4 % liegt. Das ist nicht viel, aber immerhin in 3 der 4 betrachteten Fällen noch positiv. Man kann nun auch fragen, welche Werte die Strompreise bei gegebenen Gaspreisen denn maximal annehmen dürfen, damit die Rendite noch einen vorgegebenen Minimalwert erreicht bzw. die Amortisation innerhalb einer gegebenen Anzahl von Jahren noch gewährleistet bleibt.

Maximaler Strompreis bei 20-jähriger Amortisation

Betrachten wir zunächst die Amortisation. In Abb. 4-13 werden die jeweils höchsten zulässigen Strompreise aufgezeigt, die bei gegebenen Gaspreisen noch zu einer Amortisationsdauer des Zusatzinvestments von maximal 20 Jahren führen. Dabei werden die beiden geförderten Varianten Wärmepumpe ohne und mit PV miteinander verglichen.

© Hieronymus Fischer

Abbildung 4-13: Höchster noch wirtschaftlicher Strompreis (im Hinblick auf die Zusatzinvestitionen gegenüber der Referenzheizung Gas) bei einer Amortisationsdauer  von 20 Jahren. Beispiel für einen Gaspreis von 20 ct/kWh (Rubrik ganz rechts): Der maximale noch wirtschaftliche Strompreis für die Wärmepumpe ohne PV (inkl. Förderung) unter der Bedingung „Amortisation innerhalb von 20 Jahren“ liegt in diesem Fall bei 51,3 ct/kWh. Für die Wärmepumpe mit PV (inkl. Förderung) liegt der entsprechende Grenzwert bei 73,6 ct/kWh.

Wie man dem Diagramm entnehmen kann, liegt bei der gewünschten Amortisation innerhalb von max. 20 Jahren und einem Gaspreis von 10 ct/kWh der höchste noch ökonomisch sinnvolle Strompreis für die Wärmepumpe ohne PV (inkl. Förderung) bei nur 21,2 ct/kWh. Auch bei PV-Stromnutzung sind es maximal 28,1 ct/kWh. Es ist kaum anzunehmen, dass die Strompreise in absehbarer Zeit auf dieses Niveau fallen werden. Die entsprechenden Zahlen bei einem angenommenen und durchaus realistischen Gaspreis von 15 ct pro kWh liegen bei maximalen Strompreisen von 36,3 ct pro kWh (WP o. PV) bzw. 50,9 ct pro kWh (WP mit PV).

Maximaler Strompreis bei einer Minimalrendite von 3 %

Nun ist eine Amortisationsdauer von 20 Jahren eigentlich kein hoher Anspruch. Bei einer rein ökonomischen Betrachtung könnte man auch verlangen, dass sich die Anschaffung nicht nur amortisiert, sondern darüber hinaus eine Minimalrendite von 3 % erwirtschaftet. Das ist in der nachfolgenden Abbildung 4-14 dargestellt.

© Hieronymus Fischer

Abbildung 4-14: Höchster Strompreis bei einer minimalen Zielrendite (im Hinblick auf die Zusatzinvestitionen gegenüber der Referenzheizung Gas) von 3 % bei einer Betriebsdauer von 20 Jahren. Beispiel für einen Gaspreis von 12 ct/kWh (zweite Rubrik von links): Der maximale Strompreis für die Wärmepumpe ohne PV (inkl. Förderung) unter der Bedingung „Gewährleistung der Zielrendite von 3 % über einen Zeitraum von 20 Jahren“ liegt in diesem Fall bei 20,1 ct/kWh. Für die Wärmepumpe mit PV (inkl. Förderung) liegt der entsprechende Grenzwert bei 23,2 ct/kWh.

Die Grafik (s. Abb. 4-14) zeigt, dass unter der Voraussetzung einer Zielrendite von 3 % über einen Zeitraum von 20 Jahren bei einem Gaspreis von 10 ct/kWh der höchste noch zulässige Strompreis für die Wärmepumpe ohne PV (inkl. Förderung) bei nur 14,1 ct/kWh liegt. Mit 14,2 ct/kWh kaum mehr sind es bei PV-Stromnutzung. Das ist natürlich absolut unrealistisch. Aber auch bei einem Gaspreis von 15 ct pro kWh liegen die entsprechenden maximalen Strompreise mit 29,2 ct pro kWh (WP o. PV) bzw. 36,9 ct pro kWh (WP mit PV) eher am unteren Rand des zu erwartenden Preisrahmens. Man kann daher kaum davon ausgehen, dass man mit einer Wärmepumpe Geld verdient.

Maximaler Strompreis bei 10-jähriger Amortisation

Betrachten wir zur Abgrenzung abschließend das noch höhere Ziel einer Amortisation innerhalb von 10 Jahren. In Abb. 4-15 finden sich die entsprechenden Zahlen.

© Hieronymus Fischer

Abbildung 4-15: Höchster noch wirtschaftlicher Strompreis (im Hinblick auf die Zusatzinvestitionen gegenüber der Referenzheizung Gas) bei einer Amortisationsdauer  von 10 Jahren. Beispiel für einen Gaspreis von 15 ct/kWh (zweite Rubrik von rechts): Der maximale noch wirtschaftliche Strompreis für die Wärmepumpe ohne PV (inkl. Förderung) unter der Bedingung „Amortisation innerhalb von 10 Jahren“ liegt in diesem Fall bei 27,4 ct/kWh. Für die Wärmepumpe mit PV (inkl. Förderung) liegt der entsprechende Grenzwert bei 33,5 ct/kWh.

Mit Blick auf die aktuell gültige Gaspreisbremse (Gaspreis von 12 ct/kWh) entnimmt man Abbildung 4-15, dass bei der gewünschten Amortisation innerhalb von max. 10 Jahren der höchste noch ökonomisch annehmbare Strompreis für die Wärmepumpe ohne PV (inkl. Förderung) bei nur 18,4 ct/kWh liegt. Bei Nutzung von PV-Strom (WP mit PV) sind es maximal 19,9 ct/kWh. Die tatsächlichen Strompreise bewegen sich in der Spanne zwischen 35 und 60 ct pro kWh (gedeckelt bei 40 ct) und sind damit weit darüber. Bei einem mittelfristig nicht auszuschließenden Gaspreis von 20 ct pro kWh würden sich maximal zulässige Strompreise von 42,5 ct pro kWh (WP o. PV) bzw. 56,2 ct pro kWh (WP mit PV) ergeben.

Ob die in den vorstehenden Grenzbetrachtungen erhaltenen Strompreise eingehalten werden, kann man nicht sicher vorhersagen, da die Energiewende (insbesondere die erforderliche Installation von Windrädern und Photovoltaikanlagen) noch hohe 3-stellige Milliardenbeträge verschlingen wird und die Bundesregierung auch plant, zukünftig verstärkt neue Gaskraftwerke für die Stromproduktion zu bauen, um damit die temporär entstehenden Lücken in der Wind- und Solarstromproduktion zu schließen. Im Ergebnis wird man wohl davon ausgehen müssen, dass sich höhere Gaspreise auch auf die Strompreise auswirken werden.

Ausblick auf Teil 5

Über den konkret betrachteten Fall hinaus werden grundsätzliche Überlegungen zur Wirtschaftlichkeit von Wärmepumpen gegenüber Gas-Brennwertthermen angestellt. Ferner werden Wirtschaftlichkeitskriterien mit und ohne Investition sowie mit und ohne Einsatz von Photovoltaik formuliert.

Link: Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen


Alle Beiträge der Reihe:

Energiewende und Wärmepumpe

1. Energiewende, Stromproduktion und CO2-Emission

2. Wärmepumpe. Prinzip, Funktionsweise und Grenzen

3. CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

4. Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung

5. Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen

6. Wärmepumpen für Deutschland – Klimapolitisch sinnvoll oder Fehlinvestition?

CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

Teil 3 der Reihe „Energiewende und Wärmepumpe“

Zusammenfassung

Wir betrachten die zu erwartenden CO2-Emissionen von Luft-Wasser-Wärmepumpen im Bestand anhand einer Modellrechnung auf Basis realer Verbrauchswerte mit und ohne Photovoltaik. Es wird die Frage beantwortet: Was bringt das Heizen mit Wärmepumpe gegenüber dem Heizen mit Gas an CO2-Einsparung? Neben der grundsätzlichen Analyse wird eine bespielhafte Modellrechnung für ein Bestandsgebäude (Baujahr 2000) durchgeführt.

Die Eckdaten des Objekts

Im Folgenden wollen wir einen konkreten Vergleich zwischen einer Gas-Brennwerttherme und einer Wärmepumpe für das selbe Gebäude und identischen Wetterdaten vornehmen. Das Gebäude hat einen Wärmebedarf von 90 kWh/m2a und einen Bedarf an Warmwasser von 200 l/d. Entsprechend der Gebäudegröße entspricht dies einem Jahresverbrauch von 20.000 kWh Heizwärme inklusive der Warmwasseraufbereitung. Das sind typische Werte für einen Vier-Personenhaushalt im Einfamilienhaus.

Die Wetterdaten

Zugrunde gelegt sind die Wetterdaten der Wetterstation Oberpfaffenhofen (westlich von München). In Abb. 3-1 sind die minimalen, die mittleren und die maximalen Durchschnittstemperaturen monatsweise aufgetragen. Zusätzlich sind die Frosttage pro Monat erfasst.

© Hieronymus Fischer

Abbildung 3-1: Relevante Wetterdaten für die Verbräuche an Heizwärme und die Warmwasseraufbereitung.

Wir haben in Teil 2 (Wärmepumpe. Prinzip, Funktionsweise und Grenzen) gesehen, dass die Effizienz der Wärmepumpe maßgeblich beeinflusst wird von der Umgebungstemperatur und der Vorlauftemperatur im Heizkreis. Das betrachtete Gebäude hat einen guten energetischen Standard (Baujahr 2000) und verfügt über eine Fußbodenheizung. Teilweise wird aber auch mit großflächigen Radiatoren geheizt, so dass die Vorlauftemperaturen relativ niedrig gehalten werden können. Eigentlich sind das gute Voraussetzungen für den Einsatz einer Wärmepumpe.

Die Heizkennlinie

Konkret wurde für die Gasbrennwerttherme die folgende Heizkennlinie (s. Abb. 3-2) zugrunde gelegt und diese Kennlinie auch für die Modellrechnung mit der Wärmepumpe eingesetzt.

© Hieronymus Fischer

Abbildung 3-2: Heizkennlinie (rechte Achse) für die Brennwerttherme (Gasheizung) und die Wärmepumpe sowie temperaturabhängige COP-Werte der Wärmepumpe (linke Achse). Die tatsächlichen COP schwanken um die blaue Kurve herum und liegen typischerweise etwas darunter. Neben den Leitungsverlusten sind es vor allem systembedingte Einflussfaktoren, wie die insbesondere an Tagen mit höherer Luftfeuchtigkeit und Temperaturen um null Grad und leicht darüber immer wieder nötige Enteisung der Wärmepumpe, die die Effizienz negativ beeinflussen.

Heizwärme und Strombedarf

Aufgrund der zugrunde gelegten Wetterbedingungen ergibt sich im Mittel der folgende Verlauf des Heizenergiebedarfs und in der Folge auch des Verbrauchs an elektrischer Energie und der resultierenden CO2-Emission gewichtet mit dem Heizlastprofil.

© Hieronymus Fischer

Abbildung 3-3: Heizwärme inklusive Warmwasser der Brennwerttherme bzw. der Wärmepumpe sowie Strombedarf der Wärmepumpe (linke Achse) im Jahresverlauf für die zugrunde gelegten Wetterbedingungen lt. Abb. 3-1. Die graue Kurve zeigt den Verlauf der CO2-Emissionen in g pro kWh aufgrund des Strombedarfs der Wärmepumpe im spezifischen Heizlastprofil.

Der summarische Heizbedarf inkl. Warmwasseraufbereitung belief sich auf 20.000 kWh, der Stromverbrauch auf 6650 kWh. Es wurde hier mit den tatsächlichen Verbräuchen aus 2022 gerechnet.

CO2-Emissionen Gas vs. Wärmepumpe

© Hieronymus Fischer

Abbildung 3-4: Gesamte CO2-Emissionen der Gas-Brennwertherme und der Wärmepumpe im Jahresverlauf für die zugrunde gelegten Wetterbedingungen lt. Abb. 3-1. Die graue Kurve zeigt die summarischen Monatswerte für die CO2-Emissionen aufgrund des Gasverbrauchs (182 g/kWh Heizwärme), die orangefarbene die entsprechenden Werte für den Strombedarf der Wärmepumpe im spezifischen Heizlastprofil (480 g/kWh Strom, entsprechend ca. 160 g/kWh Heizwärme).

Man sieht, dass die beiden Kurven in Abb. 3-4 relativ nahe beieinander liegen. Die Hauptursache dafür ist die hohe CO2-Belastung des Strommix. Da im vorliegenden Fall der gemittelte Effizienzfaktor bei etwa 3 liegt, ist die aus 1 kWh Strom erhaltene Heizwärme von 3 kWh mit 480 g CO2 belastet. Das macht ca. 160 g pro kWh Heizwärme und ist damit nur unwesentlich weniger als bei der direkten Verbrennung von Gas in der Brennwerttherme. Tatsächlich liegt die Einsparung der CO2-Emissionen beim Heizen mit Wärmepumpe im Vergleich zur Gas-Brennwerttherme im Beispiel nur bei etwa 12 %, was absolut ca. 440 kg pro Jahr entspricht. Dazu später (s. Abb. 3-8).

Das Heizlastprofil

Der Grund für diese nicht besonders gute Effizienz liegt in der Verteilung des Heizbedarfs über die Temperaturbereiche. Der größte Anteil der Heizenergie fällt dann an, wenn die Temperaturen niedrig sind. Dann sind natürlich auch die COP-Werte eher klein. In Abb. 3-5 ist der Heizenergieverbrauch aus dem obigen Beispiel nach Temperaturbereichen geordnet. Wie man sieht, fallen mehr als 40 % des gesamten Energieverbrauchs bei Temperaturen unter 0 °C an, in Summe ungefähr zwei Drittel sind es bei Temperaturen unter 5 °C. Nur ein Drittel der Heizenergie wird bei Temperaturen über 5 °C verbraucht, nennenswerte Teile davon gehen auf das Konto der natürlich ganzjährig erforderlichen Warmwasseraufbereitung.

© Hieronymus Fischer

Abbildung 3-5: Verteilung des Heizenergiebedarfs (inkl. Warmwasseraufbereitung) nach Außentemperaturen. Diese Verteilung des Energiebedarfs entspricht dem bereits erwähnten Heizlastprofil.

Das vorliegende Heizlastprofil wurde auch zugrunde gelegt für die Bestimmung der im Jahresverlauf schwankenden CO2-Emisssionen pro kWh des erforderlichen Strombedarfs der Wärmepumpe (s. Abb. 1-3 und Abb. 1-4). Im Mittel sind es 480 g/kWh (s. Abb. 1-3). Die tatsächlichen Werte variieren zwischen 220 und 660 g pro kWh (s. Abb. 4). In der monatsweisen Betrachtung ergeben sich Durchschnittswerte zwischen 400 und 550 g pro kWh (s. graue Kurve in Abb. 3-3).

Kombination Wärmepumpe und Photovoltaik

Da die Wärmepumpe große Mengen an Strom braucht, liegt es nahe, dafür möglichst selbsterzeugten Solarstrom zu verwenden. Indessen gibt es auch hier ein Dilemma: An kalten Wintertagen, wenn also ein hoher Bedarf an Heizenergie besteht und somit auch der Strombedarf stark steigt, ist im Mittel wenig Solarstrom verfügbar. Wetterbedingt wird der PV-Strom überwiegend in den Sommermonaten erzeugt, dann aber benötigt die Wärmepumpe relativ wenig Strom.

In Abb. 3-6 ist der Verlauf der Stromproduktion im Bezugsjahr 2022 zusammen mit dem Strombedarf der Wärmepumpe im Jahresverlauf dargestellt. Wie man sieht, wird in den Wintermonaten deutlich zu wenig PV-Strom bereitgestellt, im Sommer gibt es dagegen ein Überangebot.

© Hieronymus Fischer

Abbildung 3-6: Strombilanz mit Wärmepumpe und Photovoltaik (5,5 kWp) im Referenzjahr 2022. Die blaue Kurve markiert den tatsächlichen Strombedarf der Wärmepumpe. Die Solarstromproduktion ist gelb-braun (mit gelben Quadraten markiert) dargestellt, die gelbe Kurve darunter (mit gelben Kreisen markiert) ist der für die Wärmepumpe verfügbare Anteil. Dieser Anteil ist i.d.R. merklich kleiner, weil die Wärmepumpe z.B. auch in Phasen ohne PV-Stromproduktion Energie benötigt, z.B. abends. Tatsächlich verwendbar ist nur der orange gestrichelte Anteil (ebenfalls mit gelben Kreisen markiert). Die blau gestrichelte Kurve zeigt den restlichen Strombedarf, der vom Energieversorger (EV) bezogen werden muss. In den Sommermonaten deckt der verwendbare Anteil aus dem PV-Strom den kompletten Strombedarf der Wärmepumpe ab.

Die CO2-Emissionen unter Einbeziehung des PV-Stroms

Betrachten wir nun die resultierende CO2-Bilanz bei Verwendung des PV-Stroms. In Abb. 3-7 sind die Kurvenverläufe dargestellt. Als zusätzlichen Vergleich haben wir hier die Gasheizung ebenfalls mit der PV-Anlage kombiniert und dazu das Warmwasser mittels Heizstab und dem überschüssigen Solarstrom aufbereitet, sofern dieser verfügbar war. Im Ergebnis konnte so der Gasverbrauch etwas reduziert werden und damit auch der durch die Gasverbrennung verursachte CO2-Ausstoß.

© Hieronymus Fischer

Abbildung 3-7: CO2-Bilanz für Gasheizung und Wärmepumpe mit und ohne und Photovoltaik (5,5 kWp) im Referenzjahr 2022. Die graue Kurve zeigt die summarischen Monatswerte für die CO2-Emissionen aufgrund des Gasverbrauchs (182 g/kWh Heizwärme), die orangefarbene die entsprechenden Werte für den Strombedarf der Wärmepumpe im spezifischen Heizlastprofil (480 g/kWh Strom, entsprechend ca. 160 g/kWh Heizwärme). Die gestrichelten und jeweils mit gelben Kreisen markierten Pendants dazu zeigen die CO2-Emissionen beim Einsatz Gas plus Heizstab (ausschließlich PV-Strom) sowie den Verlauf der Emissionen beim Heizbetrieb mit Wärmepumpe und der möglichst hohen Stromnutzung aus der PV-Anlage (wie in Abb. 3-6 dargestellt).

Die CO2-Emissionen im monatlichen Vergleich

Man entnimmt Abb. 3-7 unmittelbar die merkliche Reduzierung der CO2-Emissionen bei Verwendung des PV-Stroms. Im nachfolgenden Säulendiagramm kommt die positive Wirkung deutlich zum Ausdruck.

© Hieronymus Fischer

Abbildung 3-8: CO2-Bilanz für Gasheizung und Wärmepumpe mit und ohne und Photovoltaik (5,5 kWp) im Referenzjahr 2022. Die Säulen zeigen für jeden Monat die jeweiligen CO2-Emissionen in kg für den reinen Gasbetrieb (grau), Gas plus Heizstab mit PV-Strom (grau-gelb schraffiert), Wärmepumpe ohne PV-Strom (orange) und Wärmepumpe mit PV-Strom (orange-gelb schraffiert). In den Monaten Mai bis September deckt der verwendbare Anteil aus dem PV-Strom den kompletten Strombedarf der Wärmepumpe ab, so dass rechnerisch keine (bzw. keine nennenswerten) CO2-Emissionen anfallen (s. grün-gestrichelte Pfeile).

Nicht unerwarteterweise ist die relative Verringerung des Strombezugs vom Energieversorger am größten in den Sommermonaten. Das ist indessen auch der Zeitraum des geringsten Heizwärmebedarfs, so dass der Effekt unterm Strich begrenzt bleibt. Er ist aber dennoch nennenswert, wie wir im nächsten Abschnitt sehen werden.

Die CO2-Bilanz in der Übersicht

Übers ganze Jahr gerechnet ergeben sich im Fall der Gasheizung 3.685 kg CO2 und bei der Heizung mit Wärmepumpe 3.244 kg, also 12 % weniger. In Verbindung mit einer PV-Anlage kann der Strombedarf der Wärmepumpe teilweise (etwa zu einem Drittel) über selbst erzeugten Solarstrom abgedeckt werden. Im Ergebnis reduziert das die strombedingten CO2-Emissionen der Wärmepumpe um 33 % auf 2.174 kg. Im Vergleich dazu verringert die Kombination Gasheizung mit Heizstab und gleichzeitiger Nutzung des PV-Stroms die CO2-Emissionen nur um 10 % auf 3311 kg (s. Abb. 3-9). Im Ergebnis liegen die CO2-Emisssionen der Gasbrennwerttherme mit PV aber immerhin in etwa auf dem Niveau der Wärmepumpe ohne PV.

© Hieronymus Fischer

Abbildung 3-9: Vergleich der CO2-Emissionen für Gasheizung um Wärmepumpe mit und ohne und Photovoltaik (5,5 kWp) im Referenzjahr 2022.

Resümee

Die Quintessenz aus Abb. 3-9 und damit aus dem kompletten Beitrag kann man folgendermaßen formulieren:

1. Die Wärmepumpe bringt im Vergleich zu einer Gas-Brennwerttherme im deutschen Strommix keine nennenswerte Einsparung an CO2-Emissionen (- 441 kg oder ≈ -12 %).

2. Eine Gas-Brennwerttherme in Verbindung mit einer PV-Anlage und einem Heizstab zur Aufbereitung des Warmwasserbedarfs führt im Ergebnis praktisch zur gleichen Menge an CO2-Emissionen (-374 kg oder ≈ -10 % statt -12 %) wie eine vielfach teurere Wärmepumpe.

3. In Verbindung mit einer passend dimensionierten Photovoltaik-Anlage (Stromproduktion ≈ Jahresverbrauch der Wärmepumpe) kann etwa ein Drittel des PV-Stroms für die Wärmepumpe verwendet werden. In diesem Fall hat die Wärmepumpe im Vergleich zu einer Gas-Brennwerttherme ein erhebliches CO2-Einsparpotential (≈ -40 %). Die Beispielbetrachtung zeigt eine Verringerung um ca. 1.500 kg. Gleichwohl verbleiben die CO2-Emissionen immer noch auf einem hohen Niveau. Es gibt keinen grundsätzlichen Wandel.

Selbstverständlich ist dieses Resümee auf den derzeitigen Strommix mit der noch relativ hohen CO2-Emission von 480 g/kWh im Strommix des Heizlastprofils bezogen. Dieser Wert kann – und muss – im Verlauf der nächsten Jahre sinken. Sobald die spezifische CO2-Belastung im Strommix auf deutlich unter 360 g/kWh fällt, kann man mit einem größeren Effekt als die angegebenen etwa 10 % im Hinblick auf die CO2-Einsparung rechnen. Bis 2030 ist indes nicht zu erwarten, dass auf diesem Wege größere Einsparpotentiale zu erzielen sind, da immer noch Kohle verstromt wird und der quasi CO2-freie Atomstrom nicht mehr verfügbar ist.

Ausblick auf Teil 4

Ist der Umstieg von der Gasheizung auf die Wärmepumpen-Heizung wirtschaftlich sinnvoll? Hierzu wird eine konkrete Beispielrechnung für ein Bestandsgebäude (Baujahr 2000) mit einem typischen Wärmebedarf und einem akzeptablen Energiestandard (Energieeffizienzklasse C) durchgeführt. In die Betrachtung werden die bekannten Fördermaßnahmen mit einbezogen und die Wirtschaftlichkeit hinsichtlich der Betriebskosten und der Investitionen im Vergleich zu einer modernen Gas-Brennwerttherme bei unterschiedlichen Gas-/Strom-Preiskombinationen bewertet.

Link: Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung


Alle Beiträge der Reihe:

Energiewende und Wärmepumpe

1. Energiewende, Stromproduktion und CO2-Emission

2. Wärmepumpe. Prinzip, Funktionsweise und Grenzen

3. CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

4. Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung

5. Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen

6. Wärmepumpen für Deutschland – Klimapolitisch sinnvoll oder Fehlinvestition?

Wärmepumpe: Prinzip, Funktionsweise und Grenzen

Teil 2 der Reihe „Energiewende und Wärmepumpe“

Zusammenfassung

Die grundsätzliche Wirkungsweise von Wärmepumpen wird erläutert. Dazu wird der COP-Wert als der wichtigste Effizienzfaktor von Wärmepumpen eingeführt und es werden die theoretisch möglichen und die in der Praxis erreichbaren Effizienzwerte abgeleitet und mit aktuellen Studien verglichen.

Heizen mit Wärmepumpe –  der Carnot-Prozess

Das Prinzip der Wärmekraftmaschine ist bekannt: Die in einem Trägermedium mit hoher Temperatur enthaltene thermische Energie wird aufgenommen und zum Teil in Bewegung (mechanische Energie) umgewandelt. Dabei kühlt sich das Medium ab. Die verbleibende Restwärme wird an die Umwelt abgegeben. Ausgeführt als Kreislaufprozess kann so kontinuierlich aus Wärme Bewegung erzeugt werden. Diesem Vorgang liegt der Carnot-Prozess zugrunde. In einer Wärmepumpe wird dieses physikalische Prinzip umgekehrt: Die eingesetzte mechanische Energie wird dazu verwendet, Wärmeenergie aus der Umgebung an ein Trägermedium zu übertragen. Die aufgenommene thermische Energie wird anschließend zielgerichtet abgeleitet (also z.B. für die Erwärmung von Wasser benutzt), dabei kühlt sich das Trägermedium wieder ab. Danach kann der Prozess unter erneutem Einsatz von mechanischer Energie wiederholt werden. Es ist auch hier ein Kreislaufprozess.

© Hieronymus Fischer

Abbildung 2-1: Prinzip der Wärmepumpe als Umkehrung der Wärmekraftmaschine (Carnot-Kreisprozess)

Abhängig vom dafür eingesetzten Trägermedium ist es mit der Wärmepumpe im Grundsatz möglich, bei nahezu jeder Temperatur der Umwelt thermische Energie zu entziehen und diese zur Aufheizung eines zu verwenden. Dazu muss man sich vergegenwärtigen, dass z.B. auch Außenluft mit einer Temperatur von unter Null Grad Celsius noch Wärmeenergie enthält. Der Bezugspunkt dafür ist der absolute Nullpunkt von -273 °C = Null Grad Kelvin. Bei 250 Grad Kelvin (= -23 °C) enthält ein Stoff erheblich mehr thermische Energie als bei 200 °K (= -73 °C). Wenn ihm diese entzogen wird, so kann sie prinzipiell an anderer Stelle zum Aufheizen verwendet werden. Erst beim absoluten Nullpunkt ist die thermische Energie null.

Es ist daher auch ohne Weiteres durchführbar, der kalten Außenluft, die z.B. im Winter deutlich unter 0 ° Celsius liegen kann, Wärmeenergie zu entziehen und diese als Heizquelle zu verwenden.

Grundsätzliches zur Effizienz von Wärmepumpen

Die Effizienz der Wärmeerzeugung hängt ab vom verwendeten Trägermedium (typischerweise ein Gas mit einer niedrigen Verdampfungstemperatur, z.B. Propan), der Umwelttemperatur und der Zieltemperatur der Heizwärme. Je höher die Temperatur der Umwelt und je niedriger die gewünschte Heiztemperatur, desto größer der Effizienzfaktor der Wärmepumpe, meist Coefficient of Performance (COP) genannt. Theoretisch sind COP-Werte von bis zu 10 möglich. Aufgrund von unvermeidlichen Verlusten werden in der Praxis Werte von etwa 2 (niedrige Außentemperatur, hohe Heiztemperatur, z.B. bei der Brauchwassererwärmung) bis 5 (hohe Außentemperatur, niedrige Heiztemperatur, z.B. Fußbodenheizung) erreicht.

Grundsätzlich kann der Effizienzfaktor (COP) im zugrundeliegenden Carnot-Prozess wie folgt bestimmt werden:

\begin{equation} COP = \frac{T_{H}} {T_{H} – T_{U}} \end{equation}

Dabei ist z.B. \(T_H\) die Temperatur im Heizkreis (Vorlauftemperatur) und \(T_U\) die Umwelttemperatur. Man sieht hier unmittelbar: Je kleiner die Temperaturdifferenz zwischen Heizkreis und Umwelt, desto größer der Effizienzfaktor. Die Temperaturen sind hierbei in Kelvin anzugeben.

© Hieronymus Fischer

Abbildung 2-2: Prinzip der Wärmepumpe: Aus Umweltwärme wird unter Einsatz von mechanischer Arbeit (elektrische Antriebsenergie) Heizwärme. Die Effizienz der Wärmeerzeugung hängt ab vom verwendeten Trägermedium (typischerweise ein Gas mit einer niedrigen Verdampfungstemperatur, z.B. Propan), der Umwelttemperatur und der Zieltemperatur der Heizwärme. Je höher die Temperatur der Umwelt und je niedriger die gewünschte Heiztemperatur, desto größer der Effizienzfaktor COP.

Es ist daher auch ohne Weiteres durchführbar, der kalten Außenluft, die z.B. im Winter deutlich unter 0° Celsius liegen kann, Wärmeenergie zu entziehen und diese als Heizquelle zu verwenden.

Haben Wärmepumpen einen Wirkungsgrad von mehr als 100 %?

Da man aus dem Einsatz von 1 kWh Strom teilweise 3 oder 4 kWh Wärmeenergie erhält, scheint der Wirkungsgrad der Wärmepumpe größer als 1 zu sein, sogar deutlich größer als 1. Manchmal liest man daher, der Wirkungsgrad einer Wärmepumpe liege bei 300 oder 400 Prozent. Das ist Unsinn. Rein physikalisch ist auch der Wirkungsgrad einer Wärmepumpe, wie der eines jeden technisch-physikalischen Systems, auf jeden Fall kleiner als 1 (also <100 %), weil in die Energiebilanz auch die der Umwelt entnommene Wärmeenergie einbezogen werden muss. Der COP-Wert darf nicht mit dem Wirkungsgrad verwechselt werden. Er beschreibt lediglich das Verhältnis zwischen der erhaltenen Heizwärme und der investierten elektrischen Energie.

Realistische COP-Faktoren

Mit der oben angegebenen Formel wird indes nur eine theoretische Effizienz bestimmt. In der Praxis gibt es eine Reihe von Verlusten, so dass der tatsächliche COP-Faktor sogar unter Laborbedingungen den Wert

\begin{equation} COP = \eta \cdot \frac{T_{H}}{T_{H} – T_{U}} \end{equation}

in der Regel nicht übersteigt, wobei \(\eta \approx 0.35 \dots 0.5 \).

Wenn man die Temperaturen in Celsius angibt, lautet die Formel wie folgt:

\begin{equation} COP = \eta \cdot \frac{273 + T_{H}}{T_{H} – T_{U}} \end{equation}

Unter günstigen Bedingungen, also bei vergleichsweise hohen Umwelttemperaturen und niedrigen Vorlauftemperaturen im Heizkreis, werden COP-Werte über 4 erzielt. Um vier Kilowattstunden Heizwärme zu erzeugen, muss dann nur eine Kilowattstunde elektrische Energie eingesetzt werden. Anders sieht es aus, wenn die Umwelttemperaturen niedrig (unter null Grad Celsius) und die erforderlichen Heizkreis-Vorlauftemperaturen hoch sind. Letzteres ist dann der Fall, wenn mit klassischen Radiatoren geheizt wird und der Wärmebedarf (z.B. bei vielen Gebäuden im Bestand) eher höher anzusetzen ist. Dann muss man mit COP-Werten zwischen 2 und 3 rechnen.

In Abb. 2-3 ist der prinzipielle Zusammenhang zwischen Außentemperatur und COP-Wert dargestellt.

© Hieronymus Fischer

Abbildung 2-3: Theoretisch möglicher und praktisch erzielbarer Effizienzfaktor COP in Abhängigkeit von der Umwelttemperatur. Dabei wurde eine Heizkreisvorlauftemperatur von 40 °C bei 0 °C und 45 °C bei -10 °C Außentemperatur zugrunde gelegt. Der blau verschwommene Bereich um die durchgezogene Kurve soll die Schwankungsbreite der real erzielbaren COP-Werte symbolisieren.

Der Einfluss der Heizkreistemperatur

Neben der Außentemperatur hat insbesondere auch die Zieltemperatur – im Falle der Heizung also die Vorlauftemperatur – einen maßgeblichen Einfluss auf die resultierenden COP-Werte. In Abb. 2-4 wird das exemplarisch für drei unterschiedliche Vorlauftemperaturen aufgezeigt.

© Hieronymus Fischer

Abbildung 2-4: Praktisch erzielbare Effizienzfaktoren COP in Abhängigkeit von der Umwelttemperatur und unterschiedlichen konstanten Vorlauftemperaturen im Heizkreis. Der farblich verschwommenen Bereiche um die durchgezogenen Kurven sollen die Schwankungsbreite der real erzielbaren COP-Werte symbolisieren. Man erkennt dennoch unschwer, dass eine Vorlauftemperatur von 65 °C höchst ineffizient ist. Dabei tritt dieser Fall bei der Warmwasseraufbereitung durchaus auf. Aber auch eine Vorlauftemperatur von 50 °C ist bei den üblicherweise zu erwartenden Wintertemperaturen von unter 0 °C kaum wirklich günstig zu nennen, da der resultierende COP-Faktor unter 3 fällt.

Effizienz von Wärmepumpen in der Praxis

Nachfolgend werden die typischerweise erreichten COP-Werte für die drei diskutierten Vorlauftemperaturen übersichtlich in einem Säulendiagramm dargestellt. Im konkreten Falle können die tatsächlichen COP-Werte davon abweichen. Das hängt von der jeweiligen Wärmepumpe und vom Aufstellungsort ab. Als Orientierung können die Werte dennoch dienen.

© Hieronymus Fischer

Abbildung 2-5: Praktisch erzielbare Effizienzfaktoren in Abhängigkeit von der Umwelttemperatur und unterschiedlichen konstanten Vorlauftemperaturen im Heizkreis. Man erkennt unschwer, dass die hohe Vorlauftemperatur T_V von 65 °C ein Effizienzkiller ist. Aber auch bei einer Heizkreistemperatur von 50 °C und Außentemperaturen von unter 0 °C erreicht man bei niedrigen Außentemperaturen kaum COP-Werte über 3. Auf der anderen Seite erweist sich die niedrige Vorlauftemperatur von T_V = 35 °C, wie man sie in Verbindung mit einer Fußbodenheizung regelmäßig antrifft, noch bis hinunter zu einstelligen Minustemperaturen als sehr effizient.

Vergleich mit Ergebnissen aus Studien

Dazu sei an dieser Stelle auf die aktuelle Studienlage zu den in der Praxis erzielbaren Effizienzfaktoren von Luft-Wasser-Wärmepumpen hingewiesen. Vom Fraunhofer-Institut für Bauphysik (IBP) nennt eine Studie aus 2017 COP-Werte von 1,9 – 3,3 mit einem Mittelwert von 2,6 (s. Zukunft Bau: Effizienz von Wärmepumpen). Davon nicht gänzlich verschieden berichtet eine Studie von Agora Energiewende 2022 (s. A-EW_273_Waermepumpen_WEB.pdf (agora-energiewende.de) Werte von 2,5 – 3,8 mit einem Mittelwert von 3,1. Durchgeführt wurde diese Studie von Fraunhofer ISE und dem Öko-Institut e.V. In älteren Studien (s. WP-Bericht-2006-07 (pro-dx.de)) wurden eher geringere Werte gemessen, z.B. COP 2,1 – 3,3 mit einem Mittelwert von 2,8 beim Betrieb mit Fußbodenheizung (also niedriger Vorlauftemperatur) und 1,4 – 2,8 mit einem Mittelwert von 2,3 beim Betrieb mit Radiatoren, also klassischen Heizkörpern (und damit höherer Vorlauftemperatur).

Anmerkung: Da diese Studien vornehmlich eher von Lobbyverbänden und ihnen nahestehenden Instituten durchgeführt wurden, stehen die Ergebnisse nach Ansicht des Autors nicht im Verdacht einer ausgesprochen negativen Berichterstattung. Jedenfalls darf bzw. muss man wohl davon ausgehen, dass die tatsächlichen COP-Faktoren in Bestandsgebäuden im Mittel kaum über den in den Studien genannten Werten liegen werden.

Diskussion zu den COP-Faktoren

Wie man Abb. 2-5 entnehmen kann, ist die Wärmepumpe bei hohen Außentemperaturen sehr effizient. Mit einem geringen Einsatz an elektrischer Energie erzielt man hohe Wärmeleistungen. Aber natürlich benötigt man eine Heizung vor allem dann, wenn es kalt ist. Sofern der Heizkreis auf niedrige Vorlauftemperaturen ausgelegt ist (z.B. Fußbodenheizung), sind für das Heizen mit Wärmepumpe auch Frosttage mit Temperaturen bis  -10 °C und darunter kein ernsthaftes Problem. Anders sieht es aus bei hohen Vorlauftemperaturen, wie das bei Gebäuden im Bestand und klassischen Radiator-Heizungen zu erwarten ist. Bei Temperaturen unter -10 °C und Vorlauftemperaturen von 50 °C und mehr sinkt die Wärmepumpen-Effizienz schnell unter die klimapolitisch sinnvolle Schwelle von COP = 3, entsprechend steigen die Betriebskosten. Glücklicherweise sind solche niedrigen Temperaturen nur selten zu erwarten (in Deutschland regional unterschiedlich mit etwa 1 %  Wahrscheinlichkeit [2 – 5 Tage pro Jahr]).

Bei der Bewertung der Effizienzfaktoren aus Abb. 2-5 muss man noch berücksichtigen, dass der größte Wärmebedarf eben bei niedrigen Außentemperaturen anfällt, so dass bei der gewichteten Mittelwertbildung übers Jahr gerade die niedrigeren COP-Werte das Gesamtergebnis stark beeinflussen. Die bei den hohen Außentemperaturen sehr günstigen COP-Faktoren von 3,5, 4,5 oder 6 klingen gut, sind in der Gesamtbetrachtung aber eher von nachrangiger Bedeutung, weil bei höheren Temperaturen von 10 °C und mehr nur ein geringer Teil der erforderlichen Jahresheizwärme erzeugt werden muss. Allenfalls kann die ganzjährig nötige Warmwasseraufbereitung davon profitieren.

Wie steht’s mit der Wirtschaftlichkeit?

Verglichen mit einer reinen Elektroheizung ist gewiss jeder COP-Wert über 1 von Vorteil. Aber: Die absehbaren Betriebskosten liegen dann schnell in Bereichen über den Kosten für die klassischen fossilen Energieträger Öl, Gas und Holz (Pellets) – und dies bei nicht unerheblichen Investitionen für die Installation der Wärmepumpe. Dieser Themenkreis wird im Hinblick auf Erdgas als Energieträger  in den Teilen 4 und 5 näher beleuchtet.

Bereits an dieser Stelle kann man aber Folgendes vorwegnehmen: Bei energetisch nicht sanierten Bestandsgebäuden mit klassischen Radiator-Heizungen und hohen Vorlauftemperaturen ist der Einsatz einer Wärmepumpe im Allgemeinen unwirtschaftlich, weil die Betriebskosten absehbar höher liegen als bei den alternativen Heizsystemen. Mittels einer durchgreifenden energetischen Sanierung kann man die Effizienz steigern und damit die Heizkosten deutlich senken, allerdings können die dafür erforderlichen hohe Zusatzinvestitionen leicht einige 10.000 € ausmachen und teilweise gar sechsstellig werden. Und wenn dabei die Strompreise im Vergleich zum heutigen Niveau nicht erheblich nachgeben, dann ist es fraglich, ob sich die Investitionen überhaupt je amortisieren werden. Mehr dazu in Teil 4.

Ausblick auf Teil 3

Wir betrachten die zu erwartenden CO2-Emissionen von Luft-Wasser-Wärmepumpen im Bestand anhand einer Modellrechnung auf Basis realer Verbrauchwerte mit und ohne Photovoltaik. Es wird die Frage beantwortet: Was bringt das Heizen mit Wärmepumpe gegenüber dem Heizen mit Gas an CO2-Einsparung? Neben der grundsätzlichen Analyse wird eine bespielhafte Modellrechnung für ein Bestandsgebäude (Baujahr 2000) durchgeführt.

Link: CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude


Alle Beiträge der Reihe:

Energiewende und Wärmepumpe

1. Energiewende, Stromproduktion und CO2-Emission

2. Wärmepumpe. Prinzip, Funktionsweise und Grenzen

3. CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

4. Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung

5. Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen

6. Wärmepumpen für Deutschland – Klimapolitisch sinnvoll oder Fehlinvestition?