Schlagwort-Archive: Strom

CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

Teil 3 der Reihe „Energiewende und Wärmepumpe“

Zusammenfassung

Wir betrachten die zu erwartenden CO2-Emissionen von Luft-Wasser-Wärmepumpen im Bestand anhand einer Modellrechnung auf Basis realer Verbrauchswerte mit und ohne Photovoltaik. Es wird die Frage beantwortet: Was bringt das Heizen mit Wärmepumpe gegenüber dem Heizen mit Gas an CO2-Einsparung? Neben der grundsätzlichen Analyse wird eine bespielhafte Modellrechnung für ein Bestandsgebäude (Baujahr 2000) durchgeführt.

Die Eckdaten des Objekts

Im Folgenden wollen wir einen konkreten Vergleich zwischen einer Gas-Brennwerttherme und einer Wärmepumpe für das selbe Gebäude und identischen Wetterdaten vornehmen. Das Gebäude hat einen Wärmebedarf von 90 kWh/m2a und einen Bedarf an Warmwasser von 200 l/d. Entsprechend der Gebäudegröße entspricht dies einem Jahresverbrauch von 20.000 kWh Heizwärme inklusive der Warmwasseraufbereitung. Das sind typische Werte für einen Vier-Personenhaushalt im Einfamilienhaus.

Die Wetterdaten

Zugrunde gelegt sind die Wetterdaten der Wetterstation Oberpfaffenhofen (westlich von München). In Abb. 3-1 sind die minimalen, die mittleren und die maximalen Durchschnittstemperaturen monatsweise aufgetragen. Zusätzlich sind die Frosttage pro Monat erfasst.

© Hieronymus Fischer

Abbildung 3-1: Relevante Wetterdaten für die Verbräuche an Heizwärme und die Warmwasseraufbereitung.

Wir haben in Teil 2 (Wärmepumpe. Prinzip, Funktionsweise und Grenzen) gesehen, dass die Effizienz der Wärmepumpe maßgeblich beeinflusst wird von der Umgebungstemperatur und der Vorlauftemperatur im Heizkreis. Das betrachtete Gebäude hat einen guten energetischen Standard (Baujahr 2000) und verfügt über eine Fußbodenheizung. Teilweise wird aber auch mit großflächigen Radiatoren geheizt, so dass die Vorlauftemperaturen relativ niedrig gehalten werden können. Eigentlich sind das gute Voraussetzungen für den Einsatz einer Wärmepumpe.

Die Heizkennlinie

Konkret wurde für die Gasbrennwerttherme die folgende Heizkennlinie (s. Abb. 3-2) zugrunde gelegt und diese Kennlinie auch für die Modellrechnung mit der Wärmepumpe eingesetzt.

© Hieronymus Fischer

Abbildung 3-2: Heizkennlinie (rechte Achse) für die Brennwerttherme (Gasheizung) und die Wärmepumpe sowie temperaturabhängige COP-Werte der Wärmepumpe (linke Achse). Die tatsächlichen COP schwanken um die blaue Kurve herum und liegen typischerweise etwas darunter. Neben den Leitungsverlusten sind es vor allem systembedingte Einflussfaktoren, wie die insbesondere an Tagen mit höherer Luftfeuchtigkeit und Temperaturen um null Grad und leicht darüber immer wieder nötige Enteisung der Wärmepumpe, die die Effizienz negativ beeinflussen.

Heizwärme und Strombedarf

Aufgrund der zugrunde gelegten Wetterbedingungen ergibt sich im Mittel der folgende Verlauf des Heizenergiebedarfs und in der Folge auch des Verbrauchs an elektrischer Energie und der resultierenden CO2-Emission gewichtet mit dem Heizlastprofil.

© Hieronymus Fischer

Abbildung 3-3: Heizwärme inklusive Warmwasser der Brennwerttherme bzw. der Wärmepumpe sowie Strombedarf der Wärmepumpe (linke Achse) im Jahresverlauf für die zugrunde gelegten Wetterbedingungen lt. Abb. 3-1. Die graue Kurve zeigt den Verlauf der CO2-Emissionen in g pro kWh aufgrund des Strombedarfs der Wärmepumpe im spezifischen Heizlastprofil.

Der summarische Heizbedarf inkl. Warmwasseraufbereitung belief sich auf 20.000 kWh, der Stromverbrauch auf 6650 kWh. Es wurde hier mit den tatsächlichen Verbräuchen aus 2022 gerechnet.

CO2-Emissionen Gas vs. Wärmepumpe

© Hieronymus Fischer

Abbildung 3-4: Gesamte CO2-Emissionen der Gas-Brennwertherme und der Wärmepumpe im Jahresverlauf für die zugrunde gelegten Wetterbedingungen lt. Abb. 3-1. Die graue Kurve zeigt die summarischen Monatswerte für die CO2-Emissionen aufgrund des Gasverbrauchs (182 g/kWh Heizwärme), die orangefarbene die entsprechenden Werte für den Strombedarf der Wärmepumpe im spezifischen Heizlastprofil (480 g/kWh Strom, entsprechend ca. 160 g/kWh Heizwärme).

Man sieht, dass die beiden Kurven in Abb. 3-4 relativ nahe beieinander liegen. Die Hauptursache dafür ist die hohe CO2-Belastung des Strommix. Da im vorliegenden Fall der gemittelte Effizienzfaktor bei etwa 3 liegt, ist die aus 1 kWh Strom erhaltene Heizwärme von 3 kWh mit 480 g CO2 belastet. Das macht ca. 160 g pro kWh Heizwärme und ist damit nur unwesentlich weniger als bei der direkten Verbrennung von Gas in der Brennwerttherme. Tatsächlich liegt die Einsparung der CO2-Emissionen beim Heizen mit Wärmepumpe im Vergleich zur Gas-Brennwerttherme im Beispiel nur bei etwa 12 %, was absolut ca. 440 kg pro Jahr entspricht. Dazu später (s. Abb. 3-8).

Das Heizlastprofil

Der Grund für diese nicht besonders gute Effizienz liegt in der Verteilung des Heizbedarfs über die Temperaturbereiche. Der größte Anteil der Heizenergie fällt dann an, wenn die Temperaturen niedrig sind. Dann sind natürlich auch die COP-Werte eher klein. In Abb. 3-5 ist der Heizenergieverbrauch aus dem obigen Beispiel nach Temperaturbereichen geordnet. Wie man sieht, fallen mehr als 40 % des gesamten Energieverbrauchs bei Temperaturen unter 0 °C an, in Summe ungefähr zwei Drittel sind es bei Temperaturen unter 5 °C. Nur ein Drittel der Heizenergie wird bei Temperaturen über 5 °C verbraucht, nennenswerte Teile davon gehen auf das Konto der natürlich ganzjährig erforderlichen Warmwasseraufbereitung.

© Hieronymus Fischer

Abbildung 3-5: Verteilung des Heizenergiebedarfs (inkl. Warmwasseraufbereitung) nach Außentemperaturen. Diese Verteilung des Energiebedarfs entspricht dem bereits erwähnten Heizlastprofil.

Das vorliegende Heizlastprofil wurde auch zugrunde gelegt für die Bestimmung der im Jahresverlauf schwankenden CO2-Emisssionen pro kWh des erforderlichen Strombedarfs der Wärmepumpe (s. Abb. 1-3 und Abb. 1-4). Im Mittel sind es 480 g/kWh (s. Abb. 1-3). Die tatsächlichen Werte variieren zwischen 220 und 660 g pro kWh (s. Abb. 4). In der monatsweisen Betrachtung ergeben sich Durchschnittswerte zwischen 400 und 550 g pro kWh (s. graue Kurve in Abb. 3-3).

Kombination Wärmepumpe und Photovoltaik

Da die Wärmepumpe große Mengen an Strom braucht, liegt es nahe, dafür möglichst selbsterzeugten Solarstrom zu verwenden. Indessen gibt es auch hier ein Dilemma: An kalten Wintertagen, wenn also ein hoher Bedarf an Heizenergie besteht und somit auch der Strombedarf stark steigt, ist im Mittel wenig Solarstrom verfügbar. Wetterbedingt wird der PV-Strom überwiegend in den Sommermonaten erzeugt, dann aber benötigt die Wärmepumpe relativ wenig Strom.

In Abb. 3-6 ist der Verlauf der Stromproduktion im Bezugsjahr 2022 zusammen mit dem Strombedarf der Wärmepumpe im Jahresverlauf dargestellt. Wie man sieht, wird in den Wintermonaten deutlich zu wenig PV-Strom bereitgestellt, im Sommer gibt es dagegen ein Überangebot.

© Hieronymus Fischer

Abbildung 3-6: Strombilanz mit Wärmepumpe und Photovoltaik (5,5 kWp) im Referenzjahr 2022. Die blaue Kurve markiert den tatsächlichen Strombedarf der Wärmepumpe. Die Solarstromproduktion ist gelb-braun (mit gelben Quadraten markiert) dargestellt, die gelbe Kurve darunter (mit gelben Kreisen markiert) ist der für die Wärmepumpe verfügbare Anteil. Dieser Anteil ist i.d.R. merklich kleiner, weil die Wärmepumpe z.B. auch in Phasen ohne PV-Stromproduktion Energie benötigt, z.B. abends. Tatsächlich verwendbar ist nur der orange gestrichelte Anteil (ebenfalls mit gelben Kreisen markiert). Die blau gestrichelte Kurve zeigt den restlichen Strombedarf, der vom Energieversorger (EV) bezogen werden muss. In den Sommermonaten deckt der verwendbare Anteil aus dem PV-Strom den kompletten Strombedarf der Wärmepumpe ab.

Die CO2-Emissionen unter Einbeziehung des PV-Stroms

Betrachten wir nun die resultierende CO2-Bilanz bei Verwendung des PV-Stroms. In Abb. 3-7 sind die Kurvenverläufe dargestellt. Als zusätzlichen Vergleich haben wir hier die Gasheizung ebenfalls mit der PV-Anlage kombiniert und dazu das Warmwasser mittels Heizstab und dem überschüssigen Solarstrom aufbereitet, sofern dieser verfügbar war. Im Ergebnis konnte so der Gasverbrauch etwas reduziert werden und damit auch der durch die Gasverbrennung verursachte CO2-Ausstoß.

© Hieronymus Fischer

Abbildung 3-7: CO2-Bilanz für Gasheizung und Wärmepumpe mit und ohne und Photovoltaik (5,5 kWp) im Referenzjahr 2022. Die graue Kurve zeigt die summarischen Monatswerte für die CO2-Emissionen aufgrund des Gasverbrauchs (182 g/kWh Heizwärme), die orangefarbene die entsprechenden Werte für den Strombedarf der Wärmepumpe im spezifischen Heizlastprofil (480 g/kWh Strom, entsprechend ca. 160 g/kWh Heizwärme). Die gestrichelten und jeweils mit gelben Kreisen markierten Pendants dazu zeigen die CO2-Emissionen beim Einsatz Gas plus Heizstab (ausschließlich PV-Strom) sowie den Verlauf der Emissionen beim Heizbetrieb mit Wärmepumpe und der möglichst hohen Stromnutzung aus der PV-Anlage (wie in Abb. 3-6 dargestellt).

Die CO2-Emissionen im monatlichen Vergleich

Man entnimmt Abb. 3-7 unmittelbar die merkliche Reduzierung der CO2-Emissionen bei Verwendung des PV-Stroms. Im nachfolgenden Säulendiagramm kommt die positive Wirkung deutlich zum Ausdruck.

© Hieronymus Fischer

Abbildung 3-8: CO2-Bilanz für Gasheizung und Wärmepumpe mit und ohne und Photovoltaik (5,5 kWp) im Referenzjahr 2022. Die Säulen zeigen für jeden Monat die jeweiligen CO2-Emissionen in kg für den reinen Gasbetrieb (grau), Gas plus Heizstab mit PV-Strom (grau-gelb schraffiert), Wärmepumpe ohne PV-Strom (orange) und Wärmepumpe mit PV-Strom (orange-gelb schraffiert). In den Monaten Mai bis September deckt der verwendbare Anteil aus dem PV-Strom den kompletten Strombedarf der Wärmepumpe ab, so dass rechnerisch keine (bzw. keine nennenswerten) CO2-Emissionen anfallen (s. grün-gestrichelte Pfeile).

Nicht unerwarteterweise ist die relative Verringerung des Strombezugs vom Energieversorger am größten in den Sommermonaten. Das ist indessen auch der Zeitraum des geringsten Heizwärmebedarfs, so dass der Effekt unterm Strich begrenzt bleibt. Er ist aber dennoch nennenswert, wie wir im nächsten Abschnitt sehen werden.

Die CO2-Bilanz in der Übersicht

Übers ganze Jahr gerechnet ergeben sich im Fall der Gasheizung 3.685 kg CO2 und bei der Heizung mit Wärmepumpe 3.244 kg, also 12 % weniger. In Verbindung mit einer PV-Anlage kann der Strombedarf der Wärmepumpe teilweise (etwa zu einem Drittel) über selbst erzeugten Solarstrom abgedeckt werden. Im Ergebnis reduziert das die strombedingten CO2-Emissionen der Wärmepumpe um 33 % auf 2.174 kg. Im Vergleich dazu verringert die Kombination Gasheizung mit Heizstab und gleichzeitiger Nutzung des PV-Stroms die CO2-Emissionen nur um 10 % auf 3311 kg (s. Abb. 3-9). Im Ergebnis liegen die CO2-Emisssionen der Gasbrennwerttherme mit PV aber immerhin in etwa auf dem Niveau der Wärmepumpe ohne PV.

© Hieronymus Fischer

Abbildung 3-9: Vergleich der CO2-Emissionen für Gasheizung um Wärmepumpe mit und ohne und Photovoltaik (5,5 kWp) im Referenzjahr 2022.

Resümee

Die Quintessenz aus Abb. 3-9 und damit aus dem kompletten Beitrag kann man folgendermaßen formulieren:

1. Die Wärmepumpe bringt im Vergleich zu einer Gas-Brennwerttherme im deutschen Strommix keine nennenswerte Einsparung an CO2-Emissionen (- 441 kg oder ≈ -12 %).

2. Eine Gas-Brennwerttherme in Verbindung mit einer PV-Anlage und einem Heizstab zur Aufbereitung des Warmwasserbedarfs führt im Ergebnis praktisch zur gleichen Menge an CO2-Emissionen (-374 kg oder ≈ -10 % statt -12 %) wie eine vielfach teurere Wärmepumpe.

3. In Verbindung mit einer passend dimensionierten Photovoltaik-Anlage (Stromproduktion ≈ Jahresverbrauch der Wärmepumpe) kann etwa ein Drittel des PV-Stroms für die Wärmepumpe verwendet werden. In diesem Fall hat die Wärmepumpe im Vergleich zu einer Gas-Brennwerttherme ein erhebliches CO2-Einsparpotential (≈ -40 %). Die Beispielbetrachtung zeigt eine Verringerung um ca. 1.500 kg. Gleichwohl verbleiben die CO2-Emissionen immer noch auf einem hohen Niveau. Es gibt keinen grundsätzlichen Wandel.

Selbstverständlich ist dieses Resümee auf den derzeitigen Strommix mit der noch relativ hohen CO2-Emission von 480 g/kWh im Strommix des Heizlastprofils bezogen. Dieser Wert kann – und muss – im Verlauf der nächsten Jahre sinken. Sobald die spezifische CO2-Belastung im Strommix auf deutlich unter 360 g/kWh fällt, kann man mit einem größeren Effekt als die angegebenen etwa 10 % im Hinblick auf die CO2-Einsparung rechnen. Bis 2030 ist indes nicht zu erwarten, dass auf diesem Wege größere Einsparpotentiale zu erzielen sind, da immer noch Kohle verstromt wird und der quasi CO2-freie Atomstrom nicht mehr verfügbar ist.

Ausblick auf Teil 4

Ist der Umstieg von der Gasheizung auf die Wärmepumpen-Heizung wirtschaftlich sinnvoll? Hierzu wird eine konkrete Beispielrechnung für ein Bestandsgebäude (Baujahr 2000) mit einem typischen Wärmebedarf und einem akzeptablen Energiestandard (Energieeffizienzklasse C) durchgeführt. In die Betrachtung werden die bekannten Fördermaßnahmen mit einbezogen und die Wirtschaftlichkeit hinsichtlich der Betriebskosten und der Investitionen im Vergleich zu einer modernen Gas-Brennwerttherme bei unterschiedlichen Gas-/Strom-Preiskombinationen bewertet.

Link: Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung


Alle Beiträge der Reihe:

Energiewende und Wärmepumpe

1. Energiewende, Stromproduktion und CO2-Emission

2. Wärmepumpe. Prinzip, Funktionsweise und Grenzen

3. CO2-Emissionen von Gasheizung und Wärmepumpe – Vergleich für ein Bestandsgebäude

4. Gasheizung oder Wärmepumpe? Exemplarische Wirtschaftlichkeitsrechnung

5. Grundsätzliche Analyse zur Wirtschaftlichkeit von Wärmepumpen

6. Wärmepumpen für Deutschland – Klimapolitisch sinnvoll oder Fehlinvestition?

Klimasünder Verkehr – Klimakiller SUV?

In den Medien wird man spätestens seit der Beschleunigung in der Klimadiskussion immer wieder mit der Behauptung konfrontiert, insbesondere der Verkehrssektor trage zur hohen CO2-Emission Deutschlands bei. Nicht selten wird als einer der Hauptgründe dafür genannt, es sei die hohe Anzahl der SUVs – von manchen auch als „Stadtgeländewagen“ bezeichnet –  dafür verantwortlich. Ist das wirklich zutreffend? Ist der Verkehrssektor tatsächlich der Hauptklimasünder? Tragen SUVs wirklich so prominent zu unserem CO2-Ausstoß bei? Sind sie tatsächlich das große Problem und geradezu Klimakiller? Und was genau unterscheidet ein SUV von einem „normalen“ Auto?

Die Bedeutung des Verkehrssektors für die CO2-Emission.

Entscheidend ist zunächst einmal die gesamte CO2-Emission in Deutschland. Sie belief sich 2017 auf ca. 907 Mio. Tonnen. Absolut gesehen ist das nicht wenig, auch wenn es nicht einmal 2% des weltweiten CO2-Ausstoßes sind. Wie der Blick nach Frankreich zeigt, könnte der Wert aber deutlich geringer ausfallen.

Jährliche-Treibhausgase-in-Deutschland-seit-1990-nach-Treibhausgasen
Jährliche Treibhausgase in Deutschland seit 1990 nach Treibhausgasen

Frankreich emittiert nur etwa  400 Mio. Tonnen CO2, also 55% weniger als Deutschland. Vergleich man die Wirtschaftsleistung und die Einwohnerzahl, dann könnte Deutschland mittels eines ähnlich intensiven Atomkraftausbaus wie Frankreich mit einer Kohlendioxid-Emission von ungefähr 550 Mio. Tonnen auskommen. Das wären 350 Mio. t weniger als heute. Diese Menge entspricht der Summe der gesamten jährlichen CO2-Emission durch Transport und Verkehr von halb Europa (z.B. die Länder Deutschland, Östereich, Schweiz, Tschechien, Slowakei, Niederlande, Belgien, Norwegen, Schweden, Dänemark, Finnland, Portugal und Griechenland). Tatsache ist aber, dass wir, anders als Frankreich, noch zu einem erheblichen Teil auf Kohlekraft angewiesen sind. Dies gilt insbesondere für die Grundlast, denn Solarstrom und Windkraft sind nicht grundlastfähig und können daher Kohle- oder Atomstrom nur bedingt ersetzen.

Unabhängig davon, wie man zur Kernkraft steht, war die Entscheidung, aus der Atomstromproduktion auszusteigen ein klimapolitischer Super-GAU. Nun müssen wir die Folgen dieser Fehlentscheidung ausbaden – und dafür zahlen. Im aktuellen Klimapaket wird das schon deutlich und in Ansätzen sichtbar. Der Fokus liegt dabei auf dem Verkehrssektor, als könne die CO2-Gesamtemission durch ein Umsteuern in der Mobilitätspolitik wesentlich beeinflusst werden. Das ist ein Trugschluss. Es ist allenfalls ein kleiner Baustein (s. a. Individuelle Mobilität und globale Erwärmung).

Jährliche Treibhausgas-Emissionen in Deutschland nach Sektoren
Jährliche Treibhausgas-Emissionen in Deutschland nach Sektoren

Zunächst einmal muss man nüchtern erkennen, dass das CO2-Aufkommen in Deutschland nur zu einem Bruchteil von weniger als 20% überhaupt vom Verkehr abhängt. Die Gesamtemission an CO2 betrug 2017 ca. 907 Mio. Tonnen. Davon gehen auf den Verkehrssektor etwa 164 Mio. Tonnen. Das ist ein Anteil von 18%. Die Energiewirtschaft, das verarbeitende Gewerbe, die Industrie und die Beheizung von Wohnungen bringen es zusammen auf 657 Mio. t CO2 (2016) entsprechend  72% der deutschen Gesamtemission. Man muss dabei auch noch berücksichtigen, dass im oben angegebenen Wert für den Verkehrssektor die Emissionen des Transports (Güterverkehr, Lieferverkehr) mit enthalten sind – und die können vom Autofahrer kaum beeinflusst werden.

Man entnimmt dieser Gegenüberstellung schon von den Größenverhältnissen her, dass der Verkehrssektor allein kaum für die fragwürdige Auszeichnung als Hauptklimasünder in Frage kommt, wie dies von Klimaagitatoren gerne in den Raum gestellt wird. 

Dies wird gestützt durch einen zweiten Blickwinkel: Der deutsche Tourismus verursacht nach Berechnungen der University of Sydney 329  Millionen Tonnen CO2-Äquivalente, also doppelt so viel wie der inländische Verkehrssektor in Deutschland. Basis für diese Schätzung sind umfassende Daten zum Tourismus in 189 Ländern, unter anderem von der Weltorganisation für Tourismus (UNWTO). Hier geht es also um den CO2-Fußabdruck, den der Tourismus von Deutschen global hinterlässt. Darin sind also nicht nur die eigentlichen Reisen per Auto, Flugzeug, Schiff oder Bahn enthalten, sondern auch die Aktivitäten der Urlauber, Ihre Verpflegung und die Übernachtung im In-und Ausland. Es ist eine globale, nicht eine auf Deutschland fokussierte Betrachtung und spiegelt insofern eine andere Sichtweise wider. Teilweise gehen da natürlich auch Emissionen aus dem Autoverkehr im Inland mit ein.

Stark wachsender Güterverkehr, mehr CO2.

Immerhin 5% der inländischen CO2-Emission gehen auf den Transport von Gütern zurück. Angesichts der deutlich um 30% reduzierten spezifischen Emissionen pro Tonnenkilometer bezogen auf 1995 ist dies verwunderlich. Der Grund dafür: Der Verkehrsaufwand der Lkw ist zwischen 1995 und 2017 von 279,7 Mio. Tonnenkilometer auf 475,7 Mio. Tonnenkilometer gestiegen – ein Plus von 70%. Bei den Kohlendioxid-Emissionen wurde daher der markante technische Fortschritt in der Motoreneffizienz durch die Mehrkilometer wieder aufgezehrt und sogar überkompensiert. Deswegen erhöhten sich die absoluten Kohlendioxid-Emissionen im Straßengüterverkehr zwischen 1995 und 2017 von 34,2 auf 41,0 Millionen Tonnen. Das ist ein relativer Anstieg um 20%.

Spezifische Emissionen LKW
Spezifische Emissionen LKW

Nicht zuletzt darauf sind die gestiegenen CO2-Emissionen im Verkehr zurückzuführen. Letztlich ist dieser Aufwuchs im Warenverkehr ein Ergebnis der intensiven wirtschaftlichen Verflechtung innerhalb der EU: Das ist politisch gewollt. Hier zeigt sich eben die Kehrseite der Medaille. Wenn das EU-Parlament nun den „Klimanotstand“ ausruft, dann sollten die Parlamentarier einmal in sich gehen und sich fragen, was sie selber zur gegenwärtigen Situation beigetragen haben. Der einzelne EU-Bürger kann diesen Aspekt jedenfalls kaum beeinflussen.

Der Autoverkehr taugt nicht als Sündenbock.

Auf PKWs entfallen gut 120 Mio. Tonnen der Kohlendioxid-Emissionen. Im Ergebnis sind das 13% des gesamten CO2-Aufkommens in Deutschland.  Wie bei den LKWs kann man auch hier konstatieren, dass moderne Autos Umwelt und Klima weniger belasten als in der Vergangenheit. Die spezifischen Emissionen von CO2 sind dabei seit 1995 um 15% gesunken. Wohlgemerkt, nicht die Testwerte, sondern die tatsächlichen Emissionen. Ebenfalls erwähnenswert: Die spezifischen Emissionen von Stickoxiden und von Feinstaub konnten im selben Zeitraum um 55% bzw. um 79% reduziert werden.

Gleichzeitig hat aber auch der PKW-Verkehr stark zugenommen, was den Fortschritt in der Technik zum Teil leider wieder aufgezehrt hat (2017 in Bezug auf 1990, mit einem zwischenzeitlichen Maximum um 1999). Besonders eklatant ist dies bei Dieselfahrzeugen zu sehen: Die erbrachte Fahrleistung ist seit 1995 um 322% gestiegen. Immerhin sind die gesamten Stickstoffoxid-Emissionen aus Pkw von 1995 bis 2017 um 48% gesunken. Sogar stärker noch die Feinstaub-Emissionen, die, trotz des höheren Verkehrsaufkommens um nahezu 76% zurückgegangen sind.

Spezifische Emissionen PKW
Spezifische Emissionen PKW

Kurzes  Resümee dazu.

  1. Die CO2-Emissionen aus dem PKW-Verkehr tragen nur zu etwa 13% zur Kohlendioxidbelastung in Deutschland bei. Dieser Wert ist aufgrund der höheren Mobilität im Vergleichszeitraum seit 1990  zwar nicht signifikant gesunken, es ist aber mitnichten so, dass der Verkehrssektor bzw. speziell der Autoverkehr als Klimasünder apostrophiert werden kann.
  2. Die CO2-Emissionen aus dem LKW-Verkehr sind um 20% gestiegen, vor allem wegen des dramatisch angewachsenen Warenverkehrs. Hier sollte die Politik endlich die Hausaufgaben machen und die nötigen Infrastrukturmaßnahmen ergreifen, die es erlauben, größere Anteile des Ferngütertransports auf die Schiene zu verlagern – was politisch seit 30 Jahren versprochen wird aber noch nicht einmal ansatzweise umgesetzt wurde.

Was eigentlich sind SUVs?

Kommen wir nun zu den vielgeschmähten SUVs. Wie verhält es sich mit ihrem Beitrag zur CO2-Emission? Zunächst einmal die Frage, was ist überhaupt ein SUV? Na ja, intuitiv scheint das jeder zu wissen: hoch, breit, die Sicht versperrend, stark motorisiert, in der Stadt Parkplätze blockierend und immer im Wege stehend. „Stadtgeländewagen“ werden sie von manchen genannt. Fahrzeuge also, die technisch fürs Gelände entwickelt wurden, aber nur in der Stadt bewegt werden und dort deplatziert wirken, um noch das harmloseste Attribut zu nehmen. Wie man den Medien entnehmen kann, sind mittlerweile 30% aller Neuzulassungen solche „Monster“. In 2019 waren das bereits mehr als eine Million Fahrzeuge. So jedenfalls die Statistik des Kraftfahrtbundesamts (KBA).

Zur Klassifizierung von SUVs erklärt KBA-Pressesprecher Stephan Immen gegenüber auto motor und sport: „Als SUV bezeichnen wir Fahrzeuge mit Offroad-Charakter. Das bedeutet, sie lehnen sich in ihrer Form an Geländewagen an, sind etwas höhergelegt und verfügen über einen höheren Einstieg. Verbindliche Größen zur Definition gibt es nicht, das Segment “SUV„ dient uns aber auch nur zur statistischen Betrachtung.“

Was hier als SUV gezählt wird, sind in den meisten Fällen harmlose, eher der Bequemlichkeit dienende und völlig durchschnittlich motorisierte „Hochlimousinen“. In Wahrheit keine SUVs, also Sports-Utility-Vehicles, sondern lediglich UVs: praktische und bequeme Autos für jedermann.

Schauen wir uns Beispiele an: In der Statistik des KBA werden z.B. die folgenden Autos unter der Fahrzeugklasse „SUV“ subsumiert:

  Leergewicht in kg Länge
in m
Höhe
in m
Verbrauch in l/100 km Bemerkung
Fiat Sedici 1400 4,11 1,62 4,9 Diesel (135 PS)
Citroen Cactus 1040 4,16 1,49 3,4 Diesel (99 PS)
Suzuki Vitara 1150 4,17 1,60 5,3Super (112 PS)
Suzuki Vitara D 1300 4,17 1,60 4,2 Diesel (120 PS), Allrad
Opel Mokka 1200 4,28 1,65 4,3 Diesel (136 PS)
BMW X1 1600 4,45 1,60 4,1 Diesel (150 PS)

Die Liste solcher vergleichsweise unauffälliger PKWs ließe sich noch lange fortsetzen. Die Abmessungen, Gewichte und Verbrauchswerte (und damit auch die CO2-Emissionen) dieser SUVs liegen im üblichen Rahmen dessen, was auch andere Kompaktfahrzeuge  (VW Golf, Opel Astra, Ford Focus, Renault Megane) oder die ebenfalls weit verbreiteten Mittelklassefahrzeuge (3er BMW, Mercedes C-Klasse, Audi A4, VW Passat, Opel Insignia, Ford Mondeo) aufweisen – bis auf die Fahrzeughöhe natürlich.

Was in diesem Zusammenhang ebenfalls beachtet werden sollte: Der Anstieg bei den Neuzulassungen von SUVs geht einher mit einem Rückgang bei den Mini-Vans (-23% im Vergleich 2018 gegenüber 2017) und Großraum-Vans (-15% im Vergleich 2018 gegenüber 2017). Teilweise ersetzen also SUVs die etwas aus der Mode gekommenen Vans. Schon aufgrund von Größe und Gewicht vermutet man zu Recht, dass letztere mit Sicherheit nicht umweltfreundlicher waren als die heutigen SUVs.

Abgrenzung SUVs und Geländewagen.

Das KBA ist also unscharf, was die Klassifikation von SUVs angeht. Immerhin werden in der Statistik aber SUVs und Geländewagen klar  voneinander getrennt. Geländewagen, das sind die richtig dicken Brummer: Audi Q7, BMW X5, Mercedes ML, Porsche Cayenne und andere. Viele mit Gewichten um 2 Tonnen und mehr.  – Bloß, die wirklich umweltschädlichen starken Motorisierungen kann sich kaum jemand leisten. Keines der genannten Modelle kommt über 10.000 Neuzulassungen im Jahr hinaus. Einen prominenten Ausreißer gibt es: Der VW Tiguan schafft es auf 75.000 Neuzulassungen (2018). Allerdings taugt der, trotz seiner 1,65 m Höhe, auch nicht wirklich als Klimakiller: Gewicht 1500 kg, 4,48 m lang, 1,65 m hoch, Allrad, Verbrauch 5,8 l/100 km (133 g CO2 pro km, als Benziner) – das ist in etwa der aktuelle Verbrauchsschnitt aller Fahrzeuge.

VW Tiguan
VW Tiguan – wird in der Statistik des KBA nicht als SUV, sondern als Geländeawagen geführt

Richtigerweise muss man also SUVs und Geländewagen in der Berichterstattung voneinander trennen, wie das vom KBA auch gemacht wird. In der Öffentlichkeit kommt die Unterscheidung aber nicht wirklich an. Seien wir ehrlich, diese Differenzierung überfordert offenbar die Kommunikation. Z.B. stellt Porsche gar keinen SUV her: die üblicherweise  solchermaßen bezeichneten Modelle (Cayenne, Macan) laufen in der Statistik des KBA als Geländewagen, werden aber in der öffentlichen Wahrnehmung als SUVs gesehen.

Das negative Image von SUVs wird von Modellen geprägt, die nach Lesart des KBA gar keine SUVs sind. In den Medien kommt  dieser Unterschied ebenfalls kaum an. Schlagzeilen wie „Immer mehr SUVs“ oder „Bereits 1 Million Neuzulassungen von SUVs in 2019“ müssen niemand beunruhigen, weil  damit zum größten Teil relativ harmlose Fahrzeuge mit vernünftigen Verbrauchswerten erfasst werden. Das Augenmerk muss eher auf den Geländewagen liegen, die indes, wie oben schon erwähnt, zahlenmäßig deutlich weniger zu Buche schlagen.

Wie hoch ist der Beitrag von Geländewagen zur CO2-Bilanz?

Alle Geländewagen zusammen kommen großzügig gerechnet auf etwa 300.000 Fahrzeuge p. a., nicht auf eine Million, wie die Meldungen in den Medien suggerieren. Die wenigsten davon sind echte Dreckschleudern, dafür fehlt ihnen einfach die motorische Power. Darunter sind Fahrzeuge wie der VW Tiguan (s.o.) oder der Volvo XC40 mit Verbrauchswerten im Durchschnitt des Fahrzeugbestands, aber auch welche wie der Hummer H2 mit 23 l / 100 km (zum Glück nur mit einem Gesamtbestand von 1431 Fahrzeugen per Ende 2018).

Tun wir mal so, als seien diese 300.000 Fahrzeuge sämtlich hochmotorisiert und würden im Schnitt 50% mehr CO2 emittieren (200 g/km), als dies bei Wahl eines „normalen“ Autos (133 g/km) möglich wäre. Unterstellen wir ferner eine Fahrleistung von 15.000 km p.a. Dann haben wir dadurch also einen um 0,3 Mio. Tonnen höheren CO2-Ausstoß. Das war‘s denn eigentlich schon an negativer Auswirkung  auf das Klima, denn die anderen ca. 1 Mio. der sogenannten SUVs sind in Wahrheit ganz normale PKWs, tragen also nicht erwähnenswert zu einer zusätzlichen Verschlechterung der CO2-Emission bei.

Tatsächlich erhöhen die echten „Stadtgeländewagen“ den verkehrsbedingen Anteil an den CO2-Emissionen gerade einmal um etwas mehr als 0,03%. Das ist in der Gesamtschau also der Unterschied zwischen „Alle fahren sozialverträgliche normale Autos“ und „Einige fahren richtig dicke SUVs“ (genaugenommen Geländewagen).

Der Mythos vom Klimakiller SUV.

Nun ja, mag man einwenden, 300.000 Tonnen CO2, das ist doch eine ganze Menge. Zweifellos! Es rechtfertigt aber in keiner Weise, mit dem Finger auf SUV- oder Geländewagen-Besitzer zu zeigen. Das ist ein völlig irrationaler Empörungsimpuls. Wie wahr dies ist, mag man an den folgenden Beispielen erkennen: 

  1. Schon 0,3 g Fleisch pro Person und Tag sind mit der gleichen Menge CO2 von 300.000 t pro Jahr belastet. Das entspricht einer kleinen Fleischportion von 110 g pro Person und Jahr. Wenn also alle 80 Mio. Einwohner Deutschlands einmal im Jahr auf eine Essensportion mit zwei Frikadellen verzichten, ist damit der CO2-Effekt der SUVs bereits kompensiert.
  2. Die im Schnitt pro Auto und Tag zurückgelegte Strecke beträgt ca. 40 km. Bei einem durchschnittlichen CO2-Ausstoß von 133 g pro km entspricht dies einer Menge von 240.000 Tonnen CO2. Damit sind wir bereits wieder in der Größenordnung des SUV-Effekts. Was heißt das? Sofern alle PKWs an einem Tag im Jahr in der Garage bleiben ODER wahlweise an 365 Tagen im Jahr einfach um 140 m weniger bewegt werden, dann ist damit die Mehrbelastung durch SUVs bereits ausgeglichen.

Angesichts dessen erscheint das Attribut „Klimakiller“ schon reichlich übertrieben. Bei Lichte betrachtet, ist das Ganze noch nicht einmal eine Meldung wert.

Natürlich soll es hier nicht darum gehen, die Mehremission durch SUVs, so gering sie auch seien, durch entsprechendes Verhalten aller anderen zu kompensieren. Die beiden Beispiele sollen nur zeigen, dass die Empörung über SUVs bzw. Geländewagen nicht rational begründbar ist. Mit der gleichen Verve könnte man alle an den Pranger stellen und ihnen zurufen: „Verzichtet auf 0,3 g Fleisch pro Tag“ oder „Legt an jedem Tag 140 m weniger mit dem Auto zurück“. – Es wird damit offenkundig, wie grotesk der mediale Krawall gegen SUVs bzw. Geländewagen tatsächlich ist. Nun ja, wir leben in Zeiten der irrationalen Empörung über nahezu alles.

Blick auf den gesamten Fahrzeugbestand und Resümee.

Das war die Betrachtung bezogen auf die Neuzulassungen eines Jahres. Um ein ganzheitliches Bild zu bekommen, müssen wir uns den Gesamtbestand anschauen, auch wenn es dabei eigentlich nur um den Blick in die Vergangenheit geht. Unter den 40 meistverbreiteten PKWs sind wie viele SUVs? – Genau eines, der Nissan Qashqai auf Platz 38. Das zeigt schon, dass wohl doch viel weniger SUVs gefahren werden, als man gemeinhin denkt. Tatsächlich liegt ihr Anteil derzeit bei 6,7% aller Fahrzeuge. Wobei hier wieder alles Mögliche als SUV gezählt wird (s. o.).

Richten wir daher den Blick wieder auf die Geländewagen, genauer, auf die „bösen Stadtgeländewagen“. Ihr Anteil im Bestand liegt bei 5% bzw. 2,4 Mio. Fahrzeugen. Unterstellen wir, dass diese Fahrzeuge mit ordentlich Power ausgestattet und mit einem deutlich erhöhten CO2-Ausstoß (+ 50%) unterwegs sind. Insgesamt tragen diese Fahrzeuge sodann zu einer CO2-Mehrbelastung von ca. 2,4 Mio. t bei. Das ist jetzt schon eine andere Hausnummer. Oder doch nicht? – Die CO2-Gesamtemission wird dadurch um gut 0,26% erhöht. Das ist zweifellos unnötig und wäre bei einem Verzicht auf diese vermeintlichen „Monster“ vermeidbar. Es ändert aber nichts daran, dass 2,5 g Fleisch pro Person und Tag in etwa den gleichen Effekt haben. Oder einen Kilometer zu Fuß gehen statt Autofahren für alle.

Übrigens, die ca. 4,5 Mio. Mallorca-Urlauber aus Deutschland belasten durch ihre Flugreise nach Palma und zurück die CO2-Bilanz um mehr als 3 Mio. Tonnen pro Jahr entsprechend 0,35% der CO2-Gesamtemission. Das ist bereits mehr als der ganze Effekt der “bösen Geländewagen“. Die SUVs in der Definition des KBA fallen hier gänzlich unter den Tisch, weil ihr Einfluss kaum merklich ist.

Schlussbemerkung.

Der Autor fährt keinen Stadtgeländewagen, noch nicht einmal ein SUV. Er ärgert sich gelegentlich ebenfalls über die Existenz dieser Fahrzeuge, sieht aber unter rationalen Gesichtspunkten keinen Grund, gegen SUVs etc. Stimmung zu machen. Wer dies tut, sollte nicht versäumen, mit der gleichen Verve gegen Menschen zu polemisieren, die einmal im Jahr ein Steak essen oder nach Mallorca fliegen, mit dem Auto eine Urlaubsreise machen, ihre Wohnung auf 22 Grad heizen, jeden Tag warm duschen, einen 55 Zoll Flachbildfernseher besitzen, regelmäßig im Internet surfen oder sich jedes Jahr neue Klamotten kaufen.

Anmerkung: Die Zahlen stammen teilweise aus 2016, 2017, 2018 oder 2019, je nachdem, was als neueste Zahl verfügbar war. Durch die Bezugnahme auf Zahlen aus unterschiedlichen Jahren (z.B. CO2-Emission, Zulassungszahlen, Bestandszahlen) entstehen kleinere systematische Fehler, die indes in der Gesamtschau vernachlässigbar sind. Die Fehler wirken sich allenfalls an der zweiten oder dritten Stelle hinterm Komma aus. Unabhängig davon muss man sehen, dass auch die CO2-Erhebung an sich fehlerbehaftet ist (Mittlere Abweichung aus unterschiedlichen Erhebungen: 0,7% bis 2,7% [6 – 24 Mio. Tonnen CO2], s. Link Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2019, Abschnitt 3.2.1, S. 147 ff.).

Quellenauszug:

  1. https://www.auto-motor-und-sport.de/neuheiten/segment-suv-definition-diskussion-gelaendewagen/
  2. https://www.tagesschau.de/wirtschaft/suv-millionen-marke-101.html
  3. https://www.tagesschau.de/multimedia/video/video-632301.html
  4. https://www.tagesschau.de/wirtschaft/autos-suv-105.html
  5. https://www.quarks.de/technik/mobilitaet/darum-sollten-wir-ueber-suv-diskutieren-statt-ueber-diesel/
  6. https://www.swr.de/home/So-verbreitet-sind-SUVs-Ranking-der-beliebtesten-Automodelle,beliebteste-automodellreihen-deutschland-100.html
  7. https://www.n-tv.de/wirtschaft/SUV-Zulassungen-erreichen-Rekordhoch-article21102967.html
  8. https://www.autozeitung.de/zulassungsstatistik-140455.html
  9. https://www.auto-motor-und-sport.de/verkehr/suv-neuzulassungen-deutschland-oktober-2019-daten-zahlen/
  10. https://www.swr.de/swraktuell/Klimafreundliche-Mobilitaet-Pro-und-Contra-Extra-Kfz-Steuer-fuer-SUVs,suv-steuer-pro-contra-100.html
  11. https://www.tagesspiegel.de/gesellschaft/immer-mehr-suv-neuzulassungen-das-autokaufverhalten-ist-in-einer-albernen-trotzphase/25324442.html
  12. https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#textpart-3
  13. https://www.stern.de/reise/fernreisen/klimakiller-tourismus–reisen-ist-noch-viel-schaedlicher-als-angenommen-7973902.html
  14. https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Segmente/2018/2018_segmente_node.html
  15. https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Segmente/segmente_node.html
  16. https://de.statista.com/statistik/daten/studie/153249/umfrage/gelaendewagen-neuzulassungen-in-deutschland-nach-modellreihen/

Brauchen wir Elektromobilität?

Tesla macht es vor: E-Fahrzeuge sehen chic aus, sind trendig und können obendrein auch noch sportlich sein. Kein Zweifel, für einen – relativen – Newcomer liefert Tesla wirklich anständige Fahrzeuge, ja, man darf schon sagen, richtig gute. Im Hinblick auf neue Konzepte für Antrieb, Infotainment und Fahrerassistenz ist das zunehmend eine ernsthafte Konkurrenz für deutsche Premiummarken. Grundsätzlich zumindest!

Aber ebenfalls kein Zweifel: Jeder der bekannten deutschen Hersteller BMW, Daimler und VW/Audi/Porsche, wäre jederzeit in der Lage, ein technisch mindestens gleichwertiges Produkt auf die Straße zu bringen und hätte dies auch schon vor 3 Jahren tun können. Das gleiche gilt für Japaner, Franzosen und andere. Um es ganz klar zu formulieren: Ein Elektrofahrzeug ist alles in allem technisch einfacher, als die hochgezüchteten Verbrenner nicht nur der deutschen Premium Marken. Es gibt nur eine große technische Herausforderung: Die Batterie.

Nichtsdestotrotz, pragmatisch gesehen ist das Potential da und die technische Umsetzungsfähigkeit gegeben. Warum haben die vielgescholtenen Hersteller dann nicht schon längst ein zum Tesla S vergleichbares E-Fahrzeug auf den Markt gebracht? Offenbar fehlt noch der unternehmerische Mut. Oder gibt es andere Gründe? Zumindest einmal diesen:

(1) Sie wollen und müssen mit ihren Fahrzeugen Geld verdienen. Man kann durchaus bezweifeln, dass dies mit E-Limousinen a la Tesla derzeit überhaupt möglich ist. Tesla selbst schafft es offenbar nicht in die Gewinnzone (s. hier). Es gibt noch einen weiteren Faktor: Die klassischen Produkte der Premium Marken verkaufen sich wie warme Semmeln. Gewissermaßen steht ihnen daher ihr eigener Erfolg im Wege. Warum sollten sie jetzt schon einen Zwang zur Neuorientierung verspüren? Diese Zeit wird gewiss kommen, aber ist sie wirklich schon jetzt? Dazu später.

Es gibt außerhalb der Sphäre der Automobilhersteller noch einem zweiten Grund, der gegenwärtig nicht gerade für Elektromobilität spricht.

(2) Der deutsche Strommix (25% Braunkohle, …, 26% erneuerbare Energien) resultiert in ca. 500 – 600g CO2/kWh. Ein Tesla S Performance (2014) ist mit einem gemittelten Verbrauch von ca. 24 kWh/100 km (EPA) angegeben (in der Praxis sind es, je nach Nutzung, dann doch deutlich mehr). Nun kann sich jeder leicht ausrechnen, dass dies zu einem äquivalenten CO2-Ausstoß von ca. 120 – 144 g / km führt. E-Fahrzeuge vom Schlage eines Tesla S sind daher – zumindest auf Basis des deutschen Strommix‘ – derzeit auch umweltpolitisch KEIN echter Schritt nach vorn und leisten KEINEN signifikanten Beitrag zur Verbesserung der CO2 Bilanz.

Und auch wenn man den kompletten Produktionszyklus und die Aufwände für die Energieerzeugung und den Transport mit einbezieht, bleibt für die Elektromobilität nur ein kleiner Vorteil von etwa 10% geringeren Emissionen: Damit erreicht man praktisch gesehen die Messbarkeitsstufe. Angesichts der Tatsache, dass der Anteil des Individualverkehrs an den gesamten CO2 Emissionen in Deutschland gerade einmal bei etwa 10 – 12% liegt, heißt dies was genau? – Es bedeutet Folgendes: Wenn wir alle zusammen ab sofort auf Elektromobilität umsteigen, dann sparen wir etwa 1% der CO2 Emissionen ein. In Worten „ein einziges Prozentpünktchen“! – Das Weltklima werden wir so nicht beeindrucken und noch weniger werden wir es mit dieser Maßnahme retten können.

Zurück zur Frage Tesla vs. Diesel Limousine. Nun mag man betreffend Punkt 2 einwenden, der Tesla S liege damit als relativ große und schwere Limousine gut im Rennen. Uneingeschränkt ja! Er liegt aber nicht nennenswert besser, als vergleichbare Diesel-Limousinen bei insgesamt ähnlichen Fahrleistungen (tendenziell agiler im Antritt, dafür i. d. R. schwächer in der Vmax und mit sehr viel geringerer Reichweite). Und hinsichtlich der erzielten Erlöse nach Punkt (1) spielen die genannten konventionellen Konkurrenzprodukte für die Hersteller geradezu die Rolle der Cash-Cow. Ausgehend vom Status quo wäre es, wirtschaftlich gesehen, grob unvernünftig, auf diese Erträge zu verzichten. Genauso, wie es umgekehrt vernünftig ist, dass Tesla E-Fahrzeuge und nicht etwa Diesel anbietet.

Die großen und schweren Diesel- und Benzin-Limousinen werden ja gerne als Dinosaurier bezeichnet, die früher oder später aussterben werden. Vielleicht! Unter den gegenwärtigen Randbedingungen (Energiemix) ist indes der Tesla S gleichfalls ein Dinosaurier. Man muss sich in Erinnerung rufen, vor 65 Millionen Jahren sind nicht nur die „bösen“ fleischfressenden Dinos ausgestorben, die „sanften“ pflanzenfressenden hat das gleiche Schicksal ereilt. Eine Überlebenschance – um im Bild zu bleiben – gibt es aber für smarte Lösungen a la BMW i3 und andere dieser Art.

Der Hauptvorteil eines E-Antriebs liegt in dem erreichbaren hohen Wirkungsgrad von über 90%, dahingegen liegen die klassischen Verbrenner nur bei etwa 35% – 45%. Dieser Vorteil lässt sich indes nur dann wirklich realisieren, wenn der Strom regenerativ erzeugt wird (Wasserkraft, Windkraft, Solar, …). Punkt! Bei der Stromerzeugung mittels Braunkohle, Steinkohle oder z.B. auch Erdgas hat man unterm Strich nichts oder fast nichts gewonnen und das Problem der CO2 Emission nur verlagert. Und die Wirkungsgrade von Kraftwerken liegen aus physikalischen Gründen auf ähnlichem Niveau wie die von Verbrennungskraftmaschinen im Auto. Bei Braun- oder Steinkohle ist zudem der CO2 Ausstoß deutlich höher. Über die Nutzung von Abwärme (Kraftwärmekopplung) kann man den Wirkungsgrad graduell erhöhen, das Grundproblem aber bleibt bestehen.

Kommen wir zu den Nachteilen des E-Antriebs. Das Hauptproblem ist, dass man die benötigte elektrische Energie nicht wirklich gut speichern kann. Die Energiedichte von Li-Ion-Akkus liegt derzeit bei ca. 0,1 – 0,2 kWh/kg, Superbenzin oder Diesel dagegen bieten ca. 12 kWh/kg, das ist der 60- 120-fache Wert. Und auch wenn man den ca. doppelten Wirkungsgrad des E-Motors berücksichtigt, bleibt effektiv eine nutzbare 30 – 60-fach höhere Energiedichte bei den fossilen Kraftstoffen. Der 85-kWh-Akku des Tesla S wiegt 600 kg; ca. 7 kg (etwa 8,4 l) Diesel enthalten die gleiche Energiemenge. Unter Berücksichtigung des Motorwirkungsgrads steckt daher in 14 kg Diesel (etwa 17 l) die gleiche effektiv für Vortrieb nutzbare Energiemenge.

Übrigens: Die genannten 17 l Diesel emittieren bei effektivster Nutzung in der Verbrennung etwa 45 kg CO2, das ist ungefähr die gleiche Menge, die in einem mit deutschem Strommix vollgeladenen Tesla-S-Akku steckt (42 – 51 kg CO2), und die er sich dann auch als CO2-Ausstoß anrechnen lassen muss.

Mit anderen Worten: Es gehört schon eine gehörige Portion Blauäugigkeit dazu, zu glauben, Elektromobilität in der aktuellen Entwicklungsstufe sei bereits die Lösung. Sie ist es erst dann, wenn die elektrische Energie regenerativ erzeugt wird und eine deutlich effektivere Speichermethode verfügbar ist (z.B. Akkus mit günstigeren Energie- und Leistungsdichten, Brennstoffzellentechnologie). Auf dem Übergang dahin kann man sich, bei vernünftiger Betrachtung, jegliche Form von „Glaubenskriegen“ sparen.

Damit ist das Thema für’s erste erledigt, könnte man meinen. Falsch!

Meiner Meinung nach ist JETZT der richtige Zeitpunkt, ernsthaft mit der Entwicklung vollelektrischer Fahrzeuge zu beginnen. Keine Verzichtsautos, keine Benziner mit Elektromotor, sondern Elektrofahrzeuge mit den Genen von Effizienz, Umweltfreundlichkeit und dem vom Kunden erwarteten Spaßfaktor. E-Autos fahren macht unbändigen Spaß. Beschleunigen, wie an der Schnur gezogen, leise wie eine Nähmaschine, und beim Bremsen wird die kinetische Energie wieder in die Batterie zurück gespeist. BMW hat es mit dem i3 vorgemacht: dieses Konzept ist ausbaufähig. Und zwischen 3 und 8 ist noch viel Platz für weitere Modelle. Wer jetzt startet, wird noch vor dem Ende des Jahrzehnts, wenn die Preise für Rohstoffe wieder auf Normalmaß gestiegen sind mit einem Modell oder einer kleinen Modellpalette am Markt sein können. Zugleich steigt der Anteil erneuerbarer Energien im Strommix weiter an und damit wird auch ökologisch gesehen Elektromobilität zu einer seriösen Alternative.

Keine Frage, heute ist der Markt für E-Fahrzeuge wirtschaftlich gesehen noch völlig unattraktiv.  Kaum jemand verdient Geld damit. Das kann aber schon zu Beginn des nächsten Jahrzehnts ganz anders werden. Es gibt eine Reihe von Synergien zwischen Elektromobilität, Connected Car Lösungen und Autonomiekonzepten (hochautomatisiertes und autonomes Fahren). Gegenwärtig wird die Technologie getrieben von den neu in den Mobilitätsmarkt eindringenden Digitalisierungsgiganten Google und Apple, begleitet von einigen noch kleinen innovativen und agilen Mitspielern wie Tesla. In dieser Gemengelage wird intelligente  Elektromobilität ein wichtiger Faktor sein und kann schon bald zur Wachstumslokomotive werden. Wer dann ohne Produkt dasteht wird es schwer haben, den Anschluss zu gewinnen.

Für die deutsche Wirtschaft, sogar für Deutschland insgesamt würde es fatal sein, sollte dieser Markt sich ohne uns entwickeln. Dann müssen sich auch unsere Politiker umstellen. Ohne eine prosperierende Automobilindustrie werden die Brötchen hier sehr schnell kleiner werden. Und ein Europa ohne ein leistungs- und zahlungsfähiges Deutschland kann ich mir beim besten Willen nicht vorstellen.

(Bild: ©BMW)