Schlagwort-Archive: Verkehr

Klimasünder Verkehr – Klimakiller SUV?

In den Medien wird man spätestens seit der Beschleunigung in der Klimadiskussion immer wieder mit der Behauptung konfrontiert, insbesondere der Verkehrssektor trage zur hohen CO2-Emission Deutschlands bei. Nicht selten wird als einer der Hauptgründe dafür genannt, es sei die hohe Anzahl der SUVs – von manchen auch als „Stadtgeländewagen“ bezeichnet –  dafür verantwortlich. Ist das wirklich zutreffend? Ist der Verkehrssektor tatsächlich der Hauptklimasünder? Tragen SUVs wirklich so prominent zu unserem CO2-Ausstoß bei? Sind sie tatsächlich das große Problem und geradezu Klimakiller? Und was genau unterscheidet ein SUV von einem „normalen“ Auto?

Die Bedeutung des Verkehrssektors für die CO2-Emission.

Entscheidend ist zunächst einmal die gesamte CO2-Emission in Deutschland. Sie belief sich 2017 auf ca. 907 Mio. Tonnen. Absolut gesehen ist das nicht wenig, auch wenn es nicht einmal 2% des weltweiten CO2-Ausstoßes sind. Wie der Blick nach Frankreich zeigt, könnte der Wert aber deutlich geringer ausfallen.

Jährliche-Treibhausgase-in-Deutschland-seit-1990-nach-Treibhausgasen
Jährliche Treibhausgase in Deutschland seit 1990 nach Treibhausgasen

Frankreich emittiert nur etwa  400 Mio. Tonnen CO2, also 55% weniger als Deutschland. Vergleich man die Wirtschaftsleistung und die Einwohnerzahl, dann könnte Deutschland mittels eines ähnlich intensiven Atomkraftausbaus wie Frankreich mit einer Kohlendioxid-Emission von ungefähr 550 Mio. Tonnen auskommen. Das wären 350 Mio. t weniger als heute. Diese Menge entspricht der Summe der gesamten jährlichen CO2-Emission durch Transport und Verkehr von halb Europa (z.B. die Länder Deutschland, Östereich, Schweiz, Tschechien, Slowakei, Niederlande, Belgien, Norwegen, Schweden, Dänemark, Finnland, Portugal und Griechenland). Tatsache ist aber, dass wir, anders als Frankreich, noch zu einem erheblichen Teil auf Kohlekraft angewiesen sind. Dies gilt insbesondere für die Grundlast, denn Solarstrom und Windkraft sind nicht grundlastfähig und können daher Kohle- oder Atomstrom nur bedingt ersetzen.

Unabhängig davon, wie man zur Kernkraft steht, war die Entscheidung, aus der Atomstromproduktion auszusteigen ein klimapolitischer Super-GAU. Nun müssen wir die Folgen dieser Fehlentscheidung ausbaden – und dafür zahlen. Im aktuellen Klimapaket wird das schon deutlich und in Ansätzen sichtbar. Der Fokus liegt dabei auf dem Verkehrssektor, als könne die CO2-Gesamtemission durch ein Umsteuern in der Mobilitätspolitik wesentlich beeinflusst werden. Das ist ein Trugschluss. Es ist allenfalls ein kleiner Baustein (s. a. Individuelle Mobilität und globale Erwärmung).

Jährliche Treibhausgas-Emissionen in Deutschland nach Sektoren
Jährliche Treibhausgas-Emissionen in Deutschland nach Sektoren

Zunächst einmal muss man nüchtern erkennen, dass das CO2-Aufkommen in Deutschland nur zu einem Bruchteil von weniger als 20% überhaupt vom Verkehr abhängt. Die Gesamtemission an CO2 betrug 2017 ca. 907 Mio. Tonnen. Davon gehen auf den Verkehrssektor etwa 164 Mio. Tonnen. Das ist ein Anteil von 18%. Die Energiewirtschaft, das verarbeitende Gewerbe, die Industrie und die Beheizung von Wohnungen bringen es zusammen auf 657 Mio. t CO2 (2016) entsprechend  72% der deutschen Gesamtemission. Man muss dabei auch noch berücksichtigen, dass im oben angegebenen Wert für den Verkehrssektor die Emissionen des Transports (Güterverkehr, Lieferverkehr) mit enthalten sind – und die können vom Autofahrer kaum beeinflusst werden.

Man entnimmt dieser Gegenüberstellung schon von den Größenverhältnissen her, dass der Verkehrssektor allein kaum für die fragwürdige Auszeichnung als Hauptklimasünder in Frage kommt, wie dies von Klimaagitatoren gerne in den Raum gestellt wird. 

Dies wird gestützt durch einen zweiten Blickwinkel: Der deutsche Tourismus verursacht nach Berechnungen der University of Sydney 329  Millionen Tonnen CO2-Äquivalente, also doppelt so viel wie der inländische Verkehrssektor in Deutschland. Basis für diese Schätzung sind umfassende Daten zum Tourismus in 189 Ländern, unter anderem von der Weltorganisation für Tourismus (UNWTO). Hier geht es also um den CO2-Fußabdruck, den der Tourismus von Deutschen global hinterlässt. Darin sind also nicht nur die eigentlichen Reisen per Auto, Flugzeug, Schiff oder Bahn enthalten, sondern auch die Aktivitäten der Urlauber, Ihre Verpflegung und die Übernachtung im In-und Ausland. Es ist eine globale, nicht eine auf Deutschland fokussierte Betrachtung und spiegelt insofern eine andere Sichtweise wider. Teilweise gehen da natürlich auch Emissionen aus dem Autoverkehr im Inland mit ein.

Stark wachsender Güterverkehr, mehr CO2.

Immerhin 5% der inländischen CO2-Emission gehen auf den Transport von Gütern zurück. Angesichts der deutlich um 30% reduzierten spezifischen Emissionen pro Tonnenkilometer bezogen auf 1995 ist dies verwunderlich. Der Grund dafür: Der Verkehrsaufwand der Lkw ist zwischen 1995 und 2017 von 279,7 Mio. Tonnenkilometer auf 475,7 Mio. Tonnenkilometer gestiegen – ein Plus von 70%. Bei den Kohlendioxid-Emissionen wurde daher der markante technische Fortschritt in der Motoreneffizienz durch die Mehrkilometer wieder aufgezehrt und sogar überkompensiert. Deswegen erhöhten sich die absoluten Kohlendioxid-Emissionen im Straßengüterverkehr zwischen 1995 und 2017 von 34,2 auf 41,0 Millionen Tonnen. Das ist ein relativer Anstieg um 20%.

Spezifische Emissionen LKW
Spezifische Emissionen LKW

Nicht zuletzt darauf sind die gestiegenen CO2-Emissionen im Verkehr zurückzuführen. Letztlich ist dieser Aufwuchs im Warenverkehr ein Ergebnis der intensiven wirtschaftlichen Verflechtung innerhalb der EU: Das ist politisch gewollt. Hier zeigt sich eben die Kehrseite der Medaille. Wenn das EU-Parlament nun den „Klimanotstand“ ausruft, dann sollten die Parlamentarier einmal in sich gehen und sich fragen, was sie selber zur gegenwärtigen Situation beigetragen haben. Der einzelne EU-Bürger kann diesen Aspekt jedenfalls kaum beeinflussen.

Der Autoverkehr taugt nicht als Sündenbock.

Auf PKWs entfallen gut 120 Mio. Tonnen der Kohlendioxid-Emissionen. Im Ergebnis sind das 13% des gesamten CO2-Aufkommens in Deutschland.  Wie bei den LKWs kann man auch hier konstatieren, dass moderne Autos Umwelt und Klima weniger belasten als in der Vergangenheit. Die spezifischen Emissionen von CO2 sind dabei seit 1995 um 15% gesunken. Wohlgemerkt, nicht die Testwerte, sondern die tatsächlichen Emissionen. Ebenfalls erwähnenswert: Die spezifischen Emissionen von Stickoxiden und von Feinstaub konnten im selben Zeitraum um 55% bzw. um 79% reduziert werden.

Gleichzeitig hat aber auch der PKW-Verkehr stark zugenommen, was den Fortschritt in der Technik zum Teil leider wieder aufgezehrt hat (2017 in Bezug auf 1990, mit einem zwischenzeitlichen Maximum um 1999). Besonders eklatant ist dies bei Dieselfahrzeugen zu sehen: Die erbrachte Fahrleistung ist seit 1995 um 322% gestiegen. Immerhin sind die gesamten Stickstoffoxid-Emissionen aus Pkw von 1995 bis 2017 um 48% gesunken. Sogar stärker noch die Feinstaub-Emissionen, die, trotz des höheren Verkehrsaufkommens um nahezu 76% zurückgegangen sind.

Spezifische Emissionen PKW
Spezifische Emissionen PKW

Kurzes  Resümee dazu.

  1. Die CO2-Emissionen aus dem PKW-Verkehr tragen nur zu etwa 13% zur Kohlendioxidbelastung in Deutschland bei. Dieser Wert ist aufgrund der höheren Mobilität im Vergleichszeitraum seit 1990  zwar nicht signifikant gesunken, es ist aber mitnichten so, dass der Verkehrssektor bzw. speziell der Autoverkehr als Klimasünder apostrophiert werden kann.
  2. Die CO2-Emissionen aus dem LKW-Verkehr sind um 20% gestiegen, vor allem wegen des dramatisch angewachsenen Warenverkehrs. Hier sollte die Politik endlich die Hausaufgaben machen und die nötigen Infrastrukturmaßnahmen ergreifen, die es erlauben, größere Anteile des Ferngütertransports auf die Schiene zu verlagern – was politisch seit 30 Jahren versprochen wird aber noch nicht einmal ansatzweise umgesetzt wurde.

Was eigentlich sind SUVs?

Kommen wir nun zu den vielgeschmähten SUVs. Wie verhält es sich mit ihrem Beitrag zur CO2-Emission? Zunächst einmal die Frage, was ist überhaupt ein SUV? Na ja, intuitiv scheint das jeder zu wissen: hoch, breit, die Sicht versperrend, stark motorisiert, in der Stadt Parkplätze blockierend und immer im Wege stehend. „Stadtgeländewagen“ werden sie von manchen genannt. Fahrzeuge also, die technisch fürs Gelände entwickelt wurden, aber nur in der Stadt bewegt werden und dort deplatziert wirken, um noch das harmloseste Attribut zu nehmen. Wie man den Medien entnehmen kann, sind mittlerweile 30% aller Neuzulassungen solche „Monster“. In 2019 waren das bereits mehr als eine Million Fahrzeuge. So jedenfalls die Statistik des Kraftfahrtbundesamts (KBA).

Zur Klassifizierung von SUVs erklärt KBA-Pressesprecher Stephan Immen gegenüber auto motor und sport: „Als SUV bezeichnen wir Fahrzeuge mit Offroad-Charakter. Das bedeutet, sie lehnen sich in ihrer Form an Geländewagen an, sind etwas höhergelegt und verfügen über einen höheren Einstieg. Verbindliche Größen zur Definition gibt es nicht, das Segment “SUV„ dient uns aber auch nur zur statistischen Betrachtung.“

Was hier als SUV gezählt wird, sind in den meisten Fällen harmlose, eher der Bequemlichkeit dienende und völlig durchschnittlich motorisierte „Hochlimousinen“. In Wahrheit keine SUVs, also Sports-Utility-Vehicles, sondern lediglich UVs: praktische und bequeme Autos für jedermann.

Schauen wir uns Beispiele an: In der Statistik des KBA werden z.B. die folgenden Autos unter der Fahrzeugklasse „SUV“ subsumiert:

  Leergewicht in kg Länge
in m
Höhe
in m
Verbrauch in l/100 km Bemerkung
Fiat Sedici 1400 4,11 1,62 4,9 Diesel (135 PS)
Citroen Cactus 1040 4,16 1,49 3,4 Diesel (99 PS)
Suzuki Vitara 1150 4,17 1,60 5,3Super (112 PS)
Suzuki Vitara D 1300 4,17 1,60 4,2 Diesel (120 PS), Allrad
Opel Mokka 1200 4,28 1,65 4,3 Diesel (136 PS)
BMW X1 1600 4,45 1,60 4,1 Diesel (150 PS)

Die Liste solcher vergleichsweise unauffälliger PKWs ließe sich noch lange fortsetzen. Die Abmessungen, Gewichte und Verbrauchswerte (und damit auch die CO2-Emissionen) dieser SUVs liegen im üblichen Rahmen dessen, was auch andere Kompaktfahrzeuge  (VW Golf, Opel Astra, Ford Focus, Renault Megane) oder die ebenfalls weit verbreiteten Mittelklassefahrzeuge (3er BMW, Mercedes C-Klasse, Audi A4, VW Passat, Opel Insignia, Ford Mondeo) aufweisen – bis auf die Fahrzeughöhe natürlich.

Was in diesem Zusammenhang ebenfalls beachtet werden sollte: Der Anstieg bei den Neuzulassungen von SUVs geht einher mit einem Rückgang bei den Mini-Vans (-23% im Vergleich 2018 gegenüber 2017) und Großraum-Vans (-15% im Vergleich 2018 gegenüber 2017). Teilweise ersetzen also SUVs die etwas aus der Mode gekommenen Vans. Schon aufgrund von Größe und Gewicht vermutet man zu Recht, dass letztere mit Sicherheit nicht umweltfreundlicher waren als die heutigen SUVs.

Abgrenzung SUVs und Geländewagen.

Das KBA ist also unscharf, was die Klassifikation von SUVs angeht. Immerhin werden in der Statistik aber SUVs und Geländewagen klar  voneinander getrennt. Geländewagen, das sind die richtig dicken Brummer: Audi Q7, BMW X5, Mercedes ML, Porsche Cayenne und andere. Viele mit Gewichten um 2 Tonnen und mehr.  – Bloß, die wirklich umweltschädlichen starken Motorisierungen kann sich kaum jemand leisten. Keines der genannten Modelle kommt über 10.000 Neuzulassungen im Jahr hinaus. Einen prominenten Ausreißer gibt es: Der VW Tiguan schafft es auf 75.000 Neuzulassungen (2018). Allerdings taugt der, trotz seiner 1,65 m Höhe, auch nicht wirklich als Klimakiller: Gewicht 1500 kg, 4,48 m lang, 1,65 m hoch, Allrad, Verbrauch 5,8 l/100 km (133 g CO2 pro km, als Benziner) – das ist in etwa der aktuelle Verbrauchsschnitt aller Fahrzeuge.

VW Tiguan
VW Tiguan – wird in der Statistik des KBA nicht als SUV, sondern als Geländeawagen geführt

Richtigerweise muss man also SUVs und Geländewagen in der Berichterstattung voneinander trennen, wie das vom KBA auch gemacht wird. In der Öffentlichkeit kommt die Unterscheidung aber nicht wirklich an. Seien wir ehrlich, diese Differenzierung überfordert offenbar die Kommunikation. Z.B. stellt Porsche gar keinen SUV her: die üblicherweise  solchermaßen bezeichneten Modelle (Cayenne, Macan) laufen in der Statistik des KBA als Geländewagen, werden aber in der öffentlichen Wahrnehmung als SUVs gesehen.

Das negative Image von SUVs wird von Modellen geprägt, die nach Lesart des KBA gar keine SUVs sind. In den Medien kommt  dieser Unterschied ebenfalls kaum an. Schlagzeilen wie „Immer mehr SUVs“ oder „Bereits 1 Million Neuzulassungen von SUVs in 2019“ müssen niemand beunruhigen, weil  damit zum größten Teil relativ harmlose Fahrzeuge mit vernünftigen Verbrauchswerten erfasst werden. Das Augenmerk muss eher auf den Geländewagen liegen, die indes, wie oben schon erwähnt, zahlenmäßig deutlich weniger zu Buche schlagen.

Wie hoch ist der Beitrag von Geländewagen zur CO2-Bilanz?

Alle Geländewagen zusammen kommen großzügig gerechnet auf etwa 300.000 Fahrzeuge p. a., nicht auf eine Million, wie die Meldungen in den Medien suggerieren. Die wenigsten davon sind echte Dreckschleudern, dafür fehlt ihnen einfach die motorische Power. Darunter sind Fahrzeuge wie der VW Tiguan (s.o.) oder der Volvo XC40 mit Verbrauchswerten im Durchschnitt des Fahrzeugbestands, aber auch welche wie der Hummer H2 mit 23 l / 100 km (zum Glück nur mit einem Gesamtbestand von 1431 Fahrzeugen per Ende 2018).

Tun wir mal so, als seien diese 300.000 Fahrzeuge sämtlich hochmotorisiert und würden im Schnitt 50% mehr CO2 emittieren (200 g/km), als dies bei Wahl eines „normalen“ Autos (133 g/km) möglich wäre. Unterstellen wir ferner eine Fahrleistung von 15.000 km p.a. Dann haben wir dadurch also einen um 0,3 Mio. Tonnen höheren CO2-Ausstoß. Das war‘s denn eigentlich schon an negativer Auswirkung  auf das Klima, denn die anderen ca. 1 Mio. der sogenannten SUVs sind in Wahrheit ganz normale PKWs, tragen also nicht erwähnenswert zu einer zusätzlichen Verschlechterung der CO2-Emission bei.

Tatsächlich erhöhen die echten „Stadtgeländewagen“ den verkehrsbedingen Anteil an den CO2-Emissionen gerade einmal um etwas mehr als 0,03%. Das ist in der Gesamtschau also der Unterschied zwischen „Alle fahren sozialverträgliche normale Autos“ und „Einige fahren richtig dicke SUVs“ (genaugenommen Geländewagen).

Der Mythos vom Klimakiller SUV.

Nun ja, mag man einwenden, 300.000 Tonnen CO2, das ist doch eine ganze Menge. Zweifellos! Es rechtfertigt aber in keiner Weise, mit dem Finger auf SUV- oder Geländewagen-Besitzer zu zeigen. Das ist ein völlig irrationaler Empörungsimpuls. Wie wahr dies ist, mag man an den folgenden Beispielen erkennen: 

  1. Schon 0,3 g Fleisch pro Person und Tag sind mit der gleichen Menge CO2 von 300.000 t pro Jahr belastet. Das entspricht einer kleinen Fleischportion von 110 g pro Person und Jahr. Wenn also alle 80 Mio. Einwohner Deutschlands einmal im Jahr auf eine Essensportion mit zwei Frikadellen verzichten, ist damit der CO2-Effekt der SUVs bereits kompensiert.
  2. Die im Schnitt pro Auto und Tag zurückgelegte Strecke beträgt ca. 40 km. Bei einem durchschnittlichen CO2-Ausstoß von 133 g pro km entspricht dies einer Menge von 240.000 Tonnen CO2. Damit sind wir bereits wieder in der Größenordnung des SUV-Effekts. Was heißt das? Sofern alle PKWs an einem Tag im Jahr in der Garage bleiben ODER wahlweise an 365 Tagen im Jahr einfach um 140 m weniger bewegt werden, dann ist damit die Mehrbelastung durch SUVs bereits ausgeglichen.

Angesichts dessen erscheint das Attribut „Klimakiller“ schon reichlich übertrieben. Bei Lichte betrachtet, ist das Ganze noch nicht einmal eine Meldung wert.

Natürlich soll es hier nicht darum gehen, die Mehremission durch SUVs, so gering sie auch seien, durch entsprechendes Verhalten aller anderen zu kompensieren. Die beiden Beispiele sollen nur zeigen, dass die Empörung über SUVs bzw. Geländewagen nicht rational begründbar ist. Mit der gleichen Verve könnte man alle an den Pranger stellen und ihnen zurufen: „Verzichtet auf 0,3 g Fleisch pro Tag“ oder „Legt an jedem Tag 140 m weniger mit dem Auto zurück“. – Es wird damit offenkundig, wie grotesk der mediale Krawall gegen SUVs bzw. Geländewagen tatsächlich ist. Nun ja, wir leben in Zeiten der irrationalen Empörung über nahezu alles.

Blick auf den gesamten Fahrzeugbestand und Resümee.

Das war die Betrachtung bezogen auf die Neuzulassungen eines Jahres. Um ein ganzheitliches Bild zu bekommen, müssen wir uns den Gesamtbestand anschauen, auch wenn es dabei eigentlich nur um den Blick in die Vergangenheit geht. Unter den 40 meistverbreiteten PKWs sind wie viele SUVs? – Genau eines, der Nissan Qashqai auf Platz 38. Das zeigt schon, dass wohl doch viel weniger SUVs gefahren werden, als man gemeinhin denkt. Tatsächlich liegt ihr Anteil derzeit bei 6,7% aller Fahrzeuge. Wobei hier wieder alles Mögliche als SUV gezählt wird (s. o.).

Richten wir daher den Blick wieder auf die Geländewagen, genauer, auf die „bösen Stadtgeländewagen“. Ihr Anteil im Bestand liegt bei 5% bzw. 2,4 Mio. Fahrzeugen. Unterstellen wir, dass diese Fahrzeuge mit ordentlich Power ausgestattet und mit einem deutlich erhöhten CO2-Ausstoß (+ 50%) unterwegs sind. Insgesamt tragen diese Fahrzeuge sodann zu einer CO2-Mehrbelastung von ca. 2,4 Mio. t bei. Das ist jetzt schon eine andere Hausnummer. Oder doch nicht? – Die CO2-Gesamtemission wird dadurch um gut 0,26% erhöht. Das ist zweifellos unnötig und wäre bei einem Verzicht auf diese vermeintlichen „Monster“ vermeidbar. Es ändert aber nichts daran, dass 2,5 g Fleisch pro Person und Tag in etwa den gleichen Effekt haben. Oder einen Kilometer zu Fuß gehen statt Autofahren für alle.

Übrigens, die ca. 4,5 Mio. Mallorca-Urlauber aus Deutschland belasten durch ihre Flugreise nach Palma und zurück die CO2-Bilanz um mehr als 3 Mio. Tonnen pro Jahr entsprechend 0,35% der CO2-Gesamtemission. Das ist bereits mehr als der ganze Effekt der “bösen Geländewagen“. Die SUVs in der Definition des KBA fallen hier gänzlich unter den Tisch, weil ihr Einfluss kaum merklich ist.

Schlussbemerkung.

Der Autor fährt keinen Stadtgeländewagen, noch nicht einmal ein SUV. Er ärgert sich gelegentlich ebenfalls über die Existenz dieser Fahrzeuge, sieht aber unter rationalen Gesichtspunkten keinen Grund, gegen SUVs etc. Stimmung zu machen. Wer dies tut, sollte nicht versäumen, mit der gleichen Verve gegen Menschen zu polemisieren, die einmal im Jahr ein Steak essen oder nach Mallorca fliegen, mit dem Auto eine Urlaubsreise machen, ihre Wohnung auf 22 Grad heizen, jeden Tag warm duschen, einen 55 Zoll Flachbildfernseher besitzen, regelmäßig im Internet surfen oder sich jedes Jahr neue Klamotten kaufen.

Anmerkung: Die Zahlen stammen teilweise aus 2016, 2017, 2018 oder 2019, je nachdem, was als neueste Zahl verfügbar war. Durch die Bezugnahme auf Zahlen aus unterschiedlichen Jahren (z.B. CO2-Emission, Zulassungszahlen, Bestandszahlen) entstehen kleinere systematische Fehler, die indes in der Gesamtschau vernachlässigbar sind. Die Fehler wirken sich allenfalls an der zweiten oder dritten Stelle hinterm Komma aus. Unabhängig davon muss man sehen, dass auch die CO2-Erhebung an sich fehlerbehaftet ist (Mittlere Abweichung aus unterschiedlichen Erhebungen: 0,7% bis 2,7% [6 – 24 Mio. Tonnen CO2], s. Link Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2019, Abschnitt 3.2.1, S. 147 ff.).

Quellenauszug:

  1. https://www.auto-motor-und-sport.de/neuheiten/segment-suv-definition-diskussion-gelaendewagen/
  2. https://www.tagesschau.de/wirtschaft/suv-millionen-marke-101.html
  3. https://www.tagesschau.de/multimedia/video/video-632301.html
  4. https://www.tagesschau.de/wirtschaft/autos-suv-105.html
  5. https://www.quarks.de/technik/mobilitaet/darum-sollten-wir-ueber-suv-diskutieren-statt-ueber-diesel/
  6. https://www.swr.de/home/So-verbreitet-sind-SUVs-Ranking-der-beliebtesten-Automodelle,beliebteste-automodellreihen-deutschland-100.html
  7. https://www.n-tv.de/wirtschaft/SUV-Zulassungen-erreichen-Rekordhoch-article21102967.html
  8. https://www.autozeitung.de/zulassungsstatistik-140455.html
  9. https://www.auto-motor-und-sport.de/verkehr/suv-neuzulassungen-deutschland-oktober-2019-daten-zahlen/
  10. https://www.swr.de/swraktuell/Klimafreundliche-Mobilitaet-Pro-und-Contra-Extra-Kfz-Steuer-fuer-SUVs,suv-steuer-pro-contra-100.html
  11. https://www.tagesspiegel.de/gesellschaft/immer-mehr-suv-neuzulassungen-das-autokaufverhalten-ist-in-einer-albernen-trotzphase/25324442.html
  12. https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#textpart-3
  13. https://www.stern.de/reise/fernreisen/klimakiller-tourismus–reisen-ist-noch-viel-schaedlicher-als-angenommen-7973902.html
  14. https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Segmente/2018/2018_segmente_node.html
  15. https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Segmente/segmente_node.html
  16. https://de.statista.com/statistik/daten/studie/153249/umfrage/gelaendewagen-neuzulassungen-in-deutschland-nach-modellreihen/

Autonomes Fahren – Wie kann die nötige Funktionssicherheit in hochkomplexen Szenarien hergestellt werden?

(switch to english)

Um die Antwort vorwegzunehmen: Das entscheidende Plus an funktionaler Sicherheit entsteht durch das konstruktive Zusammenwirken von On-Board-Systemen und IT-Backends.

Emissionsfreie Mobilität und hochautomatisiertes Fahren sind die bestimmenden Zukunftsthemen für Automotive-OEM und Zulieferer. Eingebettete Systeme (ES) im Fahrzeug (On-Board) sind dabei zusammen mit hochleistungsfähigen Backend-IT-Systemen (Off-Board) die Wegbereiter zur Realisierung dieser ambitionierten Ziele. Der Schlüssel liegt in der intelligenten Verbindung beider Welten.

Auf dem Weg zur Realisierung hochautomatisierter und autonomer Fahrfunktionen sehen sich etablierte OEM, Zulieferer und Engineering-Dienstleister der Aufgabe gegenüber, neuartige und hochkomplexe Kundenfunktionen wirtschaftlich zu realisieren. Zugleich verändert sich der Markt rapide durch das Auftreten von neuen und unkonventionellen Mitspielern wie Google, Apple, Tesla, Faraday, Uber und anderen, die sowohl technologisch wie auch bezüglich der verfolgten Geschäftsmodelle teilweise radikal neue Wege gehen. Dieser Wettbewerb kommt überwiegend aus der Welt der IT und versteht das Auto vor allem als „fahrende Software“.

Der bewährte, von den Premium-OEMs und ihren Zulieferern vielfach erprobte Technologiezugang basiert auf der mehr oder weniger autarken Funktionsdarstellung mittels On-Board-Sensorik und eingebetteten Systemen im Fahrzeug. Das ist das Erfolgsrezept mit dem das vormals noch weitgehend mechanische oder mechatronische System Automobil seit mehr als 20 Jahren um immer mehr Elektronik und Software technologisch erweitert wird. Und dies überaus erfolgreich: Viele Fahrzeugfunktionen wurden nach und nach komplett als eingebettete Systeme mit integrierter Software realisiert. An der Spitze der Entwicklung stehen heute komplexe Fahrerassistenzsysteme bis hin zum hochautomatisierten Fahren (Automatisierungsgrad Level 3 / Conditional Automation). Wie gesagt, das alles On-Board und im Wesentlichen ohne aktive Kommunikation mit der Außenwelt!

Noch vielfach komplexer ist die Verwirklichung von Funktionen mit den geforderten höheren Automatisierungsgraden (Level 4 und höher / High und Full Automation bzw. Autonomes Fahren). Insbesondere im urbanen Umfeld, z.B. sicheres Passieren einer mehrspurigen städtischen Kreuzung, stellen sich hier extrem schwierigere Aufgaben die heute noch nicht sicher bewältigt werden können.

Würden wir auf der ausschließlichen Basis einer – autark arbeitenden – On-Board Systemlösung das Vertrauen entwickeln, Kinder im Vorschulalter von einem autonomen Fahrzeug und ohne Begleitung Erwachsener zu den am anderen Ende der Großstadt wohnenden Großeltern bringen zu lassen? Das ist kaum vorstellbar!

Um solche hochkomplexen und hochkritischen Anwendungsfälle funktional sicher umsetzen zu können, braucht man neue Lösungen: Ein erfolgversprechender Ansatz besteht darin, bestimmte Teilfunktionen der Gesamtaufgabe aus dem Fahrzeug herauszunehmen und in ein IT-Backend auszulagern oder dort redundant zu realisieren. Dabei geht es beispielsweise um rechenintensive Anteile der Darstellung und Interpretation des digitalen Weltbilds, die Verarbeitung großer Datenmengen, die Bestimmung von Handlungsalternativen in der Fahrstrategie mittels KI-Methoden (KI = Künstliche Intelligenz), die kontinuierliche Erweiterung der Szenario-Wissensbasis (Continuous Learning), das Voraussehen des Verhaltens anderer Verkehrsteilnehmer, die Plausibilisierung der eigenen Fahrtrajektorie sowie ganz schlicht das Monitoring des Fahrzeugs und der Fahrstrecke von einem anderen Ort aus.

Es ist gewiss kein Zufall, dass die oben genannten neuen Marktplayer von Anfang an den Nutzen von IT-Lösungen erkannt und die damit verbundene Flexibilität in der Entwicklung, der Validierung und der revolutionären Veränderung des Gesamtsystems Automobil oder allgemeiner von Mobilitätskonzepten insgesamt für sich nutzbar zu machen suchen.

Aus diesem Spannungsfeld erwächst ein enormer Druck auf die etablierten OEM, Zulieferer und Engineering-Dienstleister. Beide technologischen Ansätze haben ihre Stärken und Schwächen, es kommt darauf an, bezüglich künftiger Mobilitätslösungen die Vorteile der IT-Welt (u.a. Verarbeitung großer Datenmengen, schnelle Updates, Einsatz KI-Methoden, Deep Learning) mit den Vorteilen der ES-Welt (u.a. enge Verzahnung von HW und SW, hohe Effizienz, kompakte Algorithmen, Echtzeitfähigkeit) zu verknüpfen.

Die entscheidende daraus erwachsende technologische Anforderung ist die Vernetzungsfähigkeit der Teilsysteme und Systeme im Gesamtverbund. Es geht dabei um sichere, nein, um hochsichere und absolut verlässliche Datenverbindungen in hoher Bandbreite. Nur dann, wenn dies gewährleistet ist, lassen sich funktional sichere Anwendungen (Safety) in einem heterogenen Systemumfeld aus IT- und ES-Systemen darstellen. Gleichzeitig müssen natürlich höchste Maßstäbe an die Datensicherheit (Security) gelegt werden, denn es gilt, „Ohne Security gibt es keine Safety“.

Die technologischen Eckpunkte für die Einhaltung der funktionalen Sicherheit von IT-Backends sind:

  • Funktionsabhängig definierte End-to-End-Latenz < 20 ms … < 1 sec (Laufzeit von On-Board zu IT-Backend und zurück)
  • 7×24-Verfügbarkeit und technischer Third-Level Support
  • Schutz der Daten-Integrität vor Cyber-Angriffen
  • Anonymisierung der Daten
  • Kontinuierliche Aktualisierung der Schutzmaßnahmen
  • Skalierungsfähigkeit der Services

Mit dem Aufkommen des Mobilfunkstandards 5G sind die Grundlagen für hochsichere Datenverbindungen mit geringen Latenzen (“Signallaufzeit“, Verzögerung zwischen dem Auslösen und dem tatsächlichen Durchführen einer Aktion oder Reaktion) gelegt. Die hochsichere Vernetzung zwischen den eingebetteten Systemen in den Fahrzeugen mit den geeigneten IT-Backends wird so einen maßgeblichen Beitrag für die weiteren Evolutionsschritte in der Fahrerassistenz hin zu verlässlichen höheren Automatisierungsfunktionen und zum autonomen Fahren leisten.

Dennoch kann kein Zweifel daran bestehen, dass auch mittels dieses holistischen Lösungsansatzes der Weg zum alle Verkehrsszenarien beherrschenden fahrerlosen Auto („autonomes Fahren“ im eigentlichen Wortsinne) noch weit ist. Da mag jetzt der eine oder andere einwenden, wieso denn, das geht doch, Google macht das doch schon. Auch andere haben schon gezeigt, dass sich Autos ohne Fahrereingriff im Verkehr bewegen können. Ja und nein! Hier muss man relativieren, das ist noch lange nicht die erforderliche technologische Reife für den Masseneinsatz unter beliebigen realen Verkehrsbedingungen. – Machen wir doch den Lackmustest und rufen uns noch einmal das obige Szenario in Erinnerung: Würden wir die eigenen Kinder im Vorschulalter von einem solchen autonomen Fahrzeug und ohne Begleitung Erwachsener zu den am anderen Ende der Großstadt wohnenden Großeltern bringen zu lassen? – Dann, wenn wir diese Frage ohne Zögern mit JA beantworten können, erst dann haben wir das Ziel erreicht, nicht eher.

Mittel- bis langfristig wird es zu einer weitgehenden technologischen Konvergenz der IT-Welt und der ES-Welt kommen. Die Ansätze dazu sehen wir schon heute. Z. B. gibt es immer mehr dedizierte KI-Chips, die sowohl im ES- als auch im IT-Umfeld Verwendung finden. U. a. ist es diese Entwicklung, die als Treiber und Wegbereiter die einst völlig getrennten Welten ES und IT einander näherbringt. Ein weiterer Transformationsdruck entsteht durch die hochkomplexen und vielfachen Abhängigkeiten unterliegenden neuen Automatisierungsfunktionen. Paradoxerweise sind es dabei gerade die aus der menschlichen Perspektive heraus eher einfach zu beschreibenden Use Cases (z.B., das Auto soll völlig selbständig von Adresse A zu Adresse B fahren), die nach einer ganzheitlichen Betrachtung rufen und so den Konvergenzprozess vorantreiben.