Schlagwort-Archive: Risikogruppe

Corona-Pandemie verkürzt die Lebenserwartung

Das objektive Maß für die Schwere der Pandemie ist der Einfluss auf die Lebenserwartung

Nach den sich täglich überschlagenden Horrormeldungen zu Infektionszahlen, Todesfällen und Corona-Mutanten, Impfstau, Schulschließungen, Homeoffice, Ausgangs- und Reisebeschränklungen … hat mich zunehmend die Frage interessiert, inwieweit die Corona-Pandemie die Lebenserwartung der Menschen beeinflusst. Genauer, wie stark reduzieren die beobachteten Covid-19-Todesfallzahlen die Lebenserwartung in den unterschiedlichen Altersgruppen.

Annahmen für die Berechnung der Lebenserwartung

Als Randbedingung wurde angenommen, dass die Corona-Pandemie noch ein weiteres Jahr mit der gleichen Intensität anhält und weitere etwa 50.000 Todesopfer fordert bevor 2022 die Impfungen in der Breite Wirkung zeigen werden. Sofern die Impfungen wider aller Erwartung sehr schnell erfolgen, könnte sich der Effekt auf die Reduzierung der Lebenserwartung halbieren.

Die Berechnung fußt auf den Daten des RKI (Todesfallzahlen „an oder mit“ Corona), den Sterbetafeln des Bundesamtes für Statistik (DeStatis) sowie zum Abgleich den Sterbezahlen für 2018 (Statista). Als Vergleichswerte für die Lebenserwartung wurden die Zahlen des Instituts der deutschen Wirtschaft (DeutschlandInZahlen, s. [10] und [11]) herangezogen.

Darstellung der Ergebnisse

Das folgende Diagramm (s. Abb. 1) zeigt für Deutschland die Reduzierung der Lebenserwartung in der Corona-Pandemie (blaue , grüne und rote Säulen von oben nach unten). Zugrunde gelegt sind die Todesfallzahlen per 26.01.2021 in Höhe von 53.000 („an oder mit“) Covid-19-Toten in der beobachteten Altersverteilung.

Reduzierung der Lebenserwartung in der Corona-Pandemie (blaue , grüne und rote Säulen von oben nach unten).

Abbildung 1: Reduzierung der Lebenserwartung in der Corona-Pandemie (blaue , grüne und rote Säulen von oben nach unten). Zugrunde gelegt sind die Todesfallzahlen per 26.01.2021 in der beobachteten Altersverteilung. Zum Vergleich: Die grau-punktierte Kurve zeigt die relative Lebenserwartung ohne Beeinträchtigung durch Corona im Jahre 2010 an.

Man entnimmt der Grafik, dass für die Altersgruppen bis 50 keine messbare Reduzierung der Lebenserwartung eintritt. Für die Altersgruppen bis 70 bleibt die Reduzierung der Lebenserwartung noch unter 0,1 Lebensjahren. Für Menschen im Alter von 80 reduziert sich die Lebenserwartung um etwa 0,2 Jahre, im Alter von 90 um etwa 0,25 Jahre.

Analyse und Diskussion

Auf den ersten Blick erscheint der Einfluss überraschend gering und man fragt sich, ob dies die massiven gesellschaftlichen und wirtschaftlichen Maßnahmen und Einschränkungen der Grundrechte rechtfertigt.

Ist das vielleicht eine nicht angemessene Sicht? Sind durchschnittlich 0,2 Lebensjahre weniger doch ein größerer Einschnitt, als dies die kleine Zahl ausdrückt. Wird durch diese Betrachtung die grundsätzlich insbesondere für die Älteren bestehende Gefahr verharmlost?

Schauen wir uns zum Vergleich die allgemeine Lebenserwartung ohne Beeinträchtigung durch Corona im Jahre 2010 an (s. grau-punktierte Kurve in Abb. 1).

Die grauen Dreiecke markieren die relative Lebenserwartung im Jahre 2010 für die Lebensalter 1, 30, 60 und 80. Wie man erstaunt zur Kenntnis nimmt, war die allgemeine Lebenserwartung vor einem Jahrzehnt signifikant geringer als im Jahr 2020 unter den herrschenden Corona-Bedingungen. Konkret: Ein 80-Jähriger im Jahr 2020 hatte trotz der Corona-Gefahr immer noch eine höhere Lebenserwartung als ein 80-Jähriger im pandemiefreien Jahr 2010. Bei den Jüngeren beläuft sich der Unterschied mit 0,3 bis fast 0,7 Jahre gar auf ein Vielfaches des spezifischen Einflusses aufgrund von Corona.

Entwicklung der Lebenserwartung in den letzten 30 Jahren

Wenn wir weiter zurückgehen, etwa auf das Jahr 1990 oder 2000, dann werden die Unterschiede noch eklatanter. In Abb. 2 ist exemplarisch die Entwicklung der Lebenserwartung seit 1990 für 30- 60- und 80-Jährige aufgetragen. Wie man den Kurvenverläufen entnimmt, war vor nur zwei Dekaden die Lebenserwartung für 80-Jährige um 0,9, für 60-Jährige gar um 1,9 Lebensjahre geringer als heute. Bei den unter 60-Jährigen (grüne und blaue Kurven) ist der Einfluss der Corona-Pandemie auf die Lebenserwartung in dieser Skalierung nicht wahrnehmbar. Aber auch der Verlauf bei den 80-Jährigen (rote Kurve) lässt nur eine kleine Delle erkennen. In Summe darf man daher festhalten: Im Vergleich zu dem in den letzten 30 Jahren registrierten Anstieg fällt der partielle Rückgang der Lebenserwartung aufgrund von Corona nur äußerst bescheiden aus.

Entwicklung der Lebenserwartung seit 1990 für 30- 60- und 80-Jährige. Die Werte für die Lebenserwartung unter Corona-Bedingungen sind beim Übergang von 2020 auf 2021 jeweils durch die farbigen Punkte markiert.

Abbildung 2: Entwicklung der Lebenserwartung seit 1990 für 30- 60- und 80-Jährige. Die Werte für die Lebenserwartung unter Corona-Bedingungen sind beim Übergang von 2020 auf 2021 jeweils durch die farbigen Punkte markiert. Mittels der grauen Säule hervorgehoben ist die Zeitspanne der Corona-Pandemie (ab Anfang 2020, im Modell verlängert bis Anfang 2022). Datenstand per 26.01.2021.

Nun sind bekanntlich insbesondere die Älteren von der Pandemie betroffen. Deswegen wollen wir den Einfluss der Corona-Pandemie für diese Gruppe schärfer herauszuarbeiten. Dazu betrachten wir den Kurvenverlauf bei den 80-Jährigen noch etwas genauer (s. hierzu Abb. 3). Wir sehen hier die gleiche Kurve wie in Abb. 2, nun aber in einem größeren Maßstab, so dass der „Einbruch“ stärker zur Geltung kommt. Der Rückgang im Vergleich zur vorherigen positiven Entwicklung der Lebenserwartung im Verlauf der letzten 30 Jahre ist unverkennbar. Man sieht aber auch deutlich, dass der Verlust an Lebenserwartung nur einen kleinen Bruchteil des Zuwachses der letzten 20 oder 30 Jahre ausmacht. In etwa beschränkt sich die Einbuße auf den in den letzten 3 – 5 Jahren verzeichneten Gewinn.

Entwicklung der Lebenserwartung für 80-Jährige von 1990 bis 2020. Der Wert für die Lebenserwartung unter Corona-Bedingungen ist beim Übergang von 2020 auf 2021 durch den roten Punkt markiert.

Abbildung 3: Entwicklung der Lebenserwartung für 80-Jährige von 1990 bis 2020. Der Wert für die Lebenserwartung unter Corona-Bedingungen ist beim Übergang von 2020 auf 2021 durch den roten Punkt markiert. Die graue Säule überdeckt die Zeitspanne der Corona-Pandemie (ab Anfang 2020, im Modell verlängert bis Anfang 2022). Datenstand per 26.01.2021.

Corona ein Schnippchen schlagen durch Zeitreise in die Vergangenheit?

Der zunächst verlockend klingende Gedanke, der Corona-Gefahr dadurch zu entgehen, dass man mit der Zeitmaschine zurück ins Jahr 2000 reist, würde sich nach der vorstehenden Analyse als fataler Fehler erweisen. Gegenüber der „hochriskanten“ Situation in der 2020-Corona-Pandemie würden 80-Jährige 0,7 Lebensjahre einbüßen; 60-Jährige würden gar ein noch schlechteres Geschäft machen, ihnen gingen 1,8 Lebensjahre verloren. Wohlgemerkt, wir sprechen hier vom Jahr 2000, also von der jüngsten bereits hochtechnisierten Vergangenheit, nicht von der ferneren Vorkriegszeit.

Bewertung des beobachteten Rückgangs

Auf den zweiten Blick ist daher der Einfluss der Corona-Pandemie auf die Lebenserwartung nicht nur in der absoluten Höhe, sondern auch im Vergleich mit den Vorjahren überraschend gering und man fragt sich nun erst recht, ob das die massiven Beschränkungen in allen Lebensbereichen wirklich rechtfertigt.

Damit sollen die Einzelschicksale nicht verharmlost werden. Natürlich ist jeder Tote ein Toter zu viel. Das gilt indes unabhängig von der Sterbeursache grundsätzlich auch für die 95% anderen Verstorbenen.

Indessen wird man mit dieser Individualbetrachtung dem Charakter einer Pandemie nicht gerecht. So hart das im Einzelfall auch klingen mag: Entscheidend für die Beurteilung der Schwere einer Pandemie sind die Auswirkungen auf die Gesamtbevölkerung. Die Individualschicksale sind nicht anders zu beurteilen als bei anderen Krankheiten auch. Täglich sterben in Deutschland etwa 2.600 Menschen, die meisten davon an Krebs und Herz-Kreislauferkrankungen. Und diesbezüglich sind die Jüngeren in Relation sehr viel stärker betroffen als von Corona.

Der oft gehörte Hinweis, das könne man nicht vergleichen, weil es sich bei Corona um ein hochansteckendes Infektionsgeschehen handelt, ist nicht stichhaltig. Natürlich kann man sich gegen diese Infektion mittels Eigenverantwortung wirksam schützen. Jedenfalls trifft dies für die sehr große Mehrheit (s. [13]) uneingeschränkt zu. Für die wenigen, die sich nicht oder nicht ausreichend schützen können, z.B. die Bewohner von Pflege- und Altenheimen, müssen aktive Schutzmaßnahmen ergriffen werden. Dazu gibt es Konzepte, die besser wirken als ein undifferenzierter Lockdown. Und insbesondere hier ist der Staat gefordert, Verantwortung zu übernehmen.

Wie schlimm würde es sein, wenn Deutschland von Trump regiert worden wäre?

Nun muss man aber auch festhalten, dass die geringe Auswirkung auf die Lebenserwartung natürlich auch eine Folge der getroffenen Schutzmaßnahmen ist. Völlig ohne Vorkehrungen wie Abstand halten, Hygiene und ggf. Maske tragen würden die Todesfallzahlen mit Sicherheit deutlich höher liegen und damit einhergehend auch der Einfluss auf die Verkürzung der Lebenserwartung markanter ausfallen.

Nehmen wir als probates Negativ-Szenario die USA, bis vor kurzem mit dem bekennenden Corona-Leugner Donald Trump an der Spitze. In den USA verzeichneten wir per Ende Januar etwa 430.000 Todesfälle. Entsprechend dem Verhältnis der Einwohnerzahl umgerechnet, wären das ca. 107.000 Todesfälle in Deutschland. Auf dieser Basis würde sich somit die Lebenserwartung für 80-Jährige um ca. 0,4 Jahre reduzieren. Für 60-Jährige und noch jüngere läge der Wert deutlich unter 0,1 Jahren und damit unter der Messbarkeitsgrenze (60-Jährige 0,06, 30-Jährige 0,023). Auch in diesem Falle haben wir eine theoretische Pandemiedauer von zwei Jahren und damit in der Projektion insgesamt 210.000 Coronatote zugrunde gelegt. Klar, die Todesfallzahlen wären etwa doppelt so hoch. Dennoch fällt es schwer, dieses Alternativszenario als unheilvolles Totalversagen zu verstehen.

Pandemie für immer

Die vorstehenden Betrachtungen wurden sämtlich unter einer markanten Randbedingung vorgenommen: Dauer der Pandemie 2 Jahre. Wie wäre es denn im Kontrast, wenn uns die Pandemie in der gegenwärtigen Schärfe mit ca. 50.000 Toten p.a. dauerhaft heimsuchen würde? Sei es, weil die Impfstoffe nicht wie erhofft wirken? Oder, weil z.B. viele neue mutierte Viren auftauchen, für die es keine effektive Behandlung gibt? Die Frage ist also, wie stark sich eine dauerhafte Corona-Pandemie auf die Lebenserwartung auswirken würde. Mit Sicherheit bliebe es nicht bei den geringfügigen Reduzierungen, wie wir sie oben gesehen haben.

Tatsächlich fällt die Verringerung der Lebenserwartung mit einer Einbuße von 0,8 Lebensjahren für 80-Jährige und etwa ein Jahr weniger Lebensspanne für 60-Jährige und Jüngere deutlich aus. Aber auch hier muss man konstatieren, dass das im schlimmsten Falle nur einen Rückschritt auf das Niveau der allgemeinen Lebenserwartung des Vergleichsjahres 2000 bedeuten würde. Keine Frage, das wäre ein drastischer Einschnitt. Mit größeren Recht als man das in der gegenwärtigen Situation ohnehin tut, würde man das als Tragödie bezeichnen. Trotz alledem wird man kaum sagen können, die Menschen zur Jahrtausendwende würden unter katastrophalen Bedingungen gelebt haben.

Die Dauer-Pandemie müssen wir nicht befürchten, umso weniger gibt es Anlass, die gegenwärtige Situation mit ihren nach obiger Analyse insgesamt noch sehr moderaten Belastungen als Katastrophe zu überhöhen.

Resümee

Das durchschnittliche Covid-19-Sterbealter liegt bei etwa 83 Jahren (s. [13]) und ist damit sogar höher als die allgemeine Lebenserwartung. Wir haben gesehen, dass die Verringerung der Lebenserwartung durch Corona für die Altersgruppen bis 70 unter 0,1 Lebensjahren bleibt. Auch für die Älteren reduziert sich die Lebenserwartung nur geringfügig: Bei einer Pandemiedauer von 2 Jahren mit 50.000 Toten p.a. büßen 80-Jährige im Durchschnitt etwa 0,2 Jahre Lebenserwartung ein, 90-Jährige etwa 0,25 Jahre.

Insgesamt ist der Einfluss der Corona-Pandemie auf die Lebenserwartung nicht nur in der absoluten Höhe, sondern auch im Vergleich mit der allgemeinen Entwicklung der Lebenserwartung in den letzten 2 bis 3 Dekaden überraschend gering. Der Verlust an Lebenserwartung macht bei den Jüngeren einen kaum messbaren, einen winzigen Bruchteil des in diesem Zeitraum verzeichneten Zuwachses aus. Sogar für die Älteren um 80 bleibt die Minderung noch unterhalb des allgemeinen Anstiegs der Lebenserwartung der letzten 10 Jahre.

Die vom Coronavirus ausgehende Gefahr für bestimmte Gruppen soll nicht verharmlost werden. Nach der vorstehenden Analyse gibt es aber auch ebenso wenig einen Grund, die Gesellschaft von einem Lockdown in den nächsten zu treiben. Stattdessen muss man diejenigen durch gezielte Maßnahmen schützen, die des Schutzes bedürfen, also insbesondere die Bewohner von Alten – und Pflegeheimen sowie die Älteren mit Vorerkrankungen. Alles andere ist völlig unverhältnismäßiger Aktionismus. Unbegründete Panikmache befeuert die allgemeine Hysterie, daraus erwächst indes kein nachhaltig wirksamer Lösungsansatz.


Quellen:

[1] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 26.01.2021 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Jan_2021/2021-01-26-de.pdf?__blob=publicationFile

[2] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 01.12.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Dez_2020/2020-12-01-de.pdf?__blob=publicationFile

[3] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 26. Januar 2021). Statista

https://de.statista.com/statistik/daten/studie/1103904/umfrage/corona-infektionen-covid-19-in-deutschland-nach-altersgruppe/#professional

[4] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 26. Januar 2021). Statista

https://de.statista.com/statistik/daten/studie/1104173/umfrage/todesfaelle-aufgrund-des-coronavirus-in-deutschland-nach-geschlecht/

[5] Bevölkerung – Zahl der Einwohner in Deutschland nach Altersgruppen am 31. Dezember 2019. Statista

https://de.statista.com/statistik/daten/studie/1112579/umfrage/bevoelkerung-in-deutschland-nach-altersgruppen/

[6] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S05-Altersspezifische-Sterbewahrscheinlichkeiten-Maenner-ab-1871.html?nn=9992070

[7] Altersspezifische Sterbewahrscheinlichkeiten der Frauen in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S06-Altersspezifische-Sterbewahrscheinlichkeiten-Frauen-ab-1871.html?nn=9992070

[8] Sterbetafel 2017/2019 – Ergebnisse aus der laufenden Berechnung von Periodensterbetafeln für Deutschland und die Bundesländer 2020. DESTATIS – Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Publikationen/Downloads-Sterbefaelle/periodensterbetafel-erlaeuterung-5126203197004.pdf?__blob=publicationFile

[9] Anzahl der Sterbefälle in Deutschland nach Altersgruppe im Jahr 2018. Statista

https://de.statista.com/statistik/daten/studie/1013307/umfrage/sterbefaelle-in-deutschland-nach-alter/

[10] Tabelle: Lebenserwartung (Männer) – in Jahren

https://www.deutschlandinzahlen.de/tab/deutschland/demografie/natuerliche-bevoelkerungsbewegungen/lebenserwartung-maenner

[11] Tabelle: Lebenserwartung (Frauen) – in Jahren

https://www.deutschlandinzahlen.de/tab/deutschland/demografie/natuerliche-bevoelkerungsbewegungen/lebenserwartung-frauen

[12] Das „Vorsorgeprinzip“ der Kanzlerin in der Pandemie ist einseitig

https://www.handelsblatt.com/meinung/kommentare/kommentar-das-vorsorgeprinzip-der-kanzlerin-in-der-pandemie-ist-einseitig-/26833548.html

[13] Die Corona-Pandemie: Alter ist der dominierende Risikofaktor

https://www.linkedin.com/pulse/die-corona-pandemie-alter-ist-der-hauptrisikofaktor-fischer/

[14] Das Coronavirus: Harmlos? Bedrohlich? Tödlich?

https://www.linkedin.com/pulse/das-coronavirus-harmlos-bedrohlich-t%C3%B6dlich-hieronymus-fischer

[15] Aktuelles zu Corona

Die Corona-Pandemie: Alter ist der dominierende Risikofaktor

Strategie des planlosen Managements

Wenn man die Infektions- und Todesfallzahlen sowie die abgeleiteten Sterbewahrscheinlichkeiten ohne und mit Corona analysiert, wird vor allem eines klar: Das Management der Corona-Krise ist ein Fiasko. Dieses Urteil steht in einem denkbar krassen Kontrast zur Selbsteinschätzung der verantwortlichen Politiker. Trotz der Lage ist auch der Zuspruch der Mehrheit der Menschen nach wie vor hoch. Das hängt damit zusammen, dass wir in der politischen Kommunikation und der Medienberichterstattung zu Corona vor allem mit einem vordergründigen Alarmismus konfrontiert werden.

Mit Hysterie und Angstmache werden wir die Krise aber nicht bewältigen. Zuallererst brauchen wir eine auf nüchterner Faktenanalyse beruhende klare Kommunikation und die Abkehr von einer Politik der Panikmache.

Es gibt keine Strategie für eine nachhaltige Senkung der Todesfallzahlen im Einklang mit der Aufrechterhaltung des gesellschaftlichen und wirtschaftlichen Lebens. Politik und Medien gleiten planlos von einem Lockdown zum nächsten und lassen sich leiten vom Prinzip Hoffnung. Hoffnung auf Impfstoffe, die, wie sich nun zeigt, für die Bürger der EU und speziell auch Deutschlands auf absehbare Zeit nicht in ausreichenden Mengen zur Verfügung stehen werden. Das ist das Ergebnis europäischen Missmanagements unter der deutschen EU-Präsidentschaft. Und es ist das Resultat von nicht wahrgenommener Verantwortung: Weil man aus der Impfstoffbeschaffung eine EU-Erfolgsstory machen wollte, wurden mögliche nationale Vorsorgemaßnahmen nicht getroffen. Tausende vermeidbare Todesfälle sind die Folge.

Wie steht es um den Schutz der Älteren?

Das Ergreifen vernünftiger Maßnahmen setzt voraus, dass man die Realität vorurteilsfrei zur Kenntnis nimmt. Zwar ist allgemein bekannt, dass überwiegend Ältere von schweren Covid-19-Krankheitsverläufen betroffen sind, dennoch findet dies in den Maßnahmen kaum Berücksichtigung. Im Folgenden soll der Alterseinfluss deswegen in aller Schärfe herausgearbeitet werden.

Ältere über 80 sind im Vergleich zum Anteil an der Bevölkerung weit überproportional häufig infiziert und stellen fast 70% der Toten (s. Abb. 1) mit weiter steigender Tendenz (im Zuwachs sind es sogar über 70%). Weniger als 3,5% der Covid-19-Toten waren unter 60.

Das Infektionsrisiko liegt für die Altersgruppe 80+ mit 10,13% der Infizierten bei nur 6,83% Bevölkerungsanteil fast 50% über dem Durchschnitt. Das zeigt insbesondere, dass die Hochbetagten, trotz der typischerweise geringen Kontakthäufigkeit, nur höchst unzureichend vor Infektionen geschützt werden. Die zahlreichen Ausbrüche in Heimen untermauern dies.

Wenn man die Zahlen mit den Vorwochen und Vormonaten vergleicht, erkennt man, dass das Risiko für die Älteren sogar im Lockdown unvermindert weiter steigt.

Covid-19 Infizierte und Todesfälle pro Altersgruppe.

Abbildung 1: Covid-19 Infizierte und Todesfälle pro Altersgruppe. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Sterberisiko nach Altersgruppen

Schauen wir uns das Sterberisiko in den Altersgruppen an (s. Abb. 2): Die Covid-19-Mortalität ist in der Altersgruppe 80+ mit 650 Toten pro 100.000 Personen etwa 8-mal größer als für die 60-79-Jährigen (78 Tote pro 100.000 Personen) und sogar 200-mal größer als für die 0-59-Jährigen (mit knapp 3 Toten pro 100.000 Personen der Altersgruppe).

Wenn die Infektionsrate der Altersgruppe 80+ auf dem Niveau des Durchschnitts der Bevölkerung liegen würde, dann hätten wir etwa 18.000 Covid-19-Tote weniger zu verzeichnen. Der Befund macht klar, dass pauschale Maßnahmen nach dem Gießkannenprinzip zum Scheitern verurteilt sind. Ohne effektiven Schutz der Meistgefährdeten geht es nicht. Maßnahmen sind effektiv und verhältnismäßig nur dann, wenn sie die vulnerablen Gruppen in den Fokus nehmen. Und die „vulnerablen“ Gruppen, das sind nicht 27 oder 30 Millionen, also die Gruppe der Menschen über 60, wie uns Politiker gerne erklären, es sind insbesondere die Menschen über 80, also etwa 5,7 Mio. Personen. Eine Sonderstellung nehmen darunter die Bewohner von Alten- Pflegeheimen ein. Sie sind besonders gefährdet (s. Abb. 3) und werden dennoch nicht konsequent geschützt. 

Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe.

Abbildung 2: Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Tatsächlich kommt eine erhebliche Anzahl der etwa 53.000 Coronatoten (per 26.01.2021) aus Heimen, obwohl dort nur etwa 850.000 Menschen leben. In der Altersgruppe 80+ mit 37.000 Covid-19-Toten macht dieser Personenkreis etwa die Hälfte der Sterbefälle aus. In einzelnen Bundesländern waren zweitweise gar bis zu 90% der Corona-Todesfälle in Heimen zu verzeichnen. Es liegt auf der Hand, dass ein allgemeiner Lockdown in dieser Hinsicht kaum etwas bewirken kann. Das weisen die Daten klar aus.

Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe.

Abbildung 3: Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. Die Differenzierung nach Heimbewohnern beruht auf der begründeten Abschätzung, dass etwa 50% der Todesfälle in der Altersgruppe 80+ auf die Hochbetagten in Heimen zurückgehen. Unter allen Todesfällen sind es mindestens ein Drittel. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Die Hochbetagten in den Heimen werden vor Infektionen nicht geschützt. Sie sind überproportional häufig infiziert. So ist das seit fast einem Jahr. Mehr als 10.000 Todesfälle gehen allein auf dieses Konto.

Alter ist der Hauptrisikofaktor

Aus dem Vorstehenden geht klar hervor, dass die Alten mit großem Abstand das höchste Risiko tragen, dabei aber durch die ergriffenen Maßnahmen nur unzureichend geschützt werden. In den folgenden beiden Grafiken wird das noch schärfer herausgearbeitet. Der Kurvenverlauf zeigt die spezifische Corona-Mortalität in Todesfällen pro 100.000 Personen im entsprechenden Lebensalter.

Man entnimmt der ersten Grafik (s. Abb. 4), wie enorm stark das Alter direkt das Covid-19-Sterberisiko beeinflusst. Beispiel: Für 80-Jährige haben wir einen Wert zwischen 200 und 300 pro 100.000, für 90-Jährige schon von über 800.

In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe.

Abbildung 4: In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Ganz anders bei den Jüngeren. Hier sind die Werte in der Altersgruppe unter 60 so niedrig, dass sie kaum mehr abgelesen werden können. In der zweiten Grafik (s. Abb. 5) daher dieselbe Information in logarithmischer Darstellung aufgetragen. Wie man der Abbildung entnimmt, bleibt die Mortalität bis zum Alter von knapp 40 noch unter 1:100.000.

In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. Hier in logarithmischer Darstellung.

Abbildung 5: In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. Hier in logarithmischer Darstellung. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

In guter Annäherung steigt das Sterberisiko ab 40 exponentiell etwa mit dem Faktor 10 pro 20 Lebensjahren. Der formelmäßige Zusammenhang kann so beschrieben werden:

\begin{equation} \textit{Mortalität} \approx 10^{ \frac { Alter\, – \, 36 }{ 18 } } \end{equation}

Eine noch bessere Approximation zeigt die grau-punktierte Linie (s. Abb. 5). Sie gehorcht der Formel:

\begin{equation} \textit{Mortalität} = 0.0111 \cdot e^{ 0.125 \, \cdot Alter } \end{equation}

Es wird damit nochmals unterstrichen: Das Risiko, sich zu infizieren und an Covid-19 zu versterben ist in hohem Maße vom Alter abhängig.

Die Gefährdung wächst exponentiell mit steigendem Alter

Bei dieser Sachlage kann es kaum mehr verwundern, dass die von der Politik ergriffenen pauschalen Maßnahmen nicht den gewünschten Effekt zeitigen. Mittlerweile fordern daher auch schon viele unabhängige Experten, den Fokus viel stärker auf den Schutz der Hauptrisikogruppen zu legen. Überdies muss man hier differenzieren: Die vulnerablen Gruppen sind, wie wir oben gesehen haben, zunächst die Bewohner von Heimen (etwa 850.000 Personen und die über 80-Jährigen (in Summe etwa 5,7 Mio.), es sind nicht pauschal alle über 60-Jährigen. Die meisten Angehörigen der Altersgruppe 60-79 können für sich selbst sorgen: In dieser Gruppe liegt das Infektionsrisiko signifikant unter dem Durchschnitt der Bevölkerung (etwa -30%, s. Abb. 1). Eigenverantwortung ist ein extrem stark wirksamer Schutzfaktor.

Altersverteilung im Vergleich zu allen Sterbefällen

Wie wir gesehen haben, sind Ältere besonders von Corona betroffen. Dies zeigt sich auch bei Betrachtung der Altersverteilung der Covid-19-Sterbefälle im Vergleich zur Verteilung der Sterbefälle aufgrund anderer Ursachen. Grundsätzlich ist klar, dass das allgemeine Sterberisiko mit dem Alter ansteigt. Das Coronavirus differenziert sogar noch stärker nach Alter. Man kann dies leicht den beiden Kurven in Abb. 6 entnehmen: Die blaue Kurve zeigt die Verteilung der allgemeinen Sterbefälle nach Lebensalter. Die rote Kurve stellt die Altersverteilung der Covid-19-Sterbefälle dar.

Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen.

Abbildung 6: Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen. Für ein vorgegebenes Alter x gibt der y-Wert den relativen Anteil der Todesfälle in der Dekade x-5 bis x+5 Jahre an. Beispiel x = 85: y = 47%, also waren etwa 47% der Covid-19-Sterbefälle im Alter zwischen 80 und 90. Bei den allgemeinen Sterbefällen waren es nur ca. 37%. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Das Coronavirus ist eine stärkere „Altersdiskriminante“ als alle anderen Lebensrisiken zusammen

In Abb. 7 sind die kumulierten Inzidenzen aufgetragen. Greifen wir uns exemplarisch das Alter 80 heraus: 30% der Covid-19-Toten (s. rote Kurve) verstarben im Alter jünger als 80. Bei den allgemeinen Sterbefällen beläuft sich der Anteil indes auf fast 45%. Etwa 10% der Coronatoten waren jünger als 70, bei den sonstigen Todesfällen waren es mehr als doppelt so viel, nämlich fast 22%.

Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen.

Abbildung 7: Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen. Für ein vorgegebenes Alter x gibt der y-Wert den relativen Anteil der Todesfälle an, die in einem Alter jünger als x verstorben sind. Beispiel x = 80: y = 30%, also waren etwa 30% der Covid-19-Sterbefälle im Alter jünger als 80. Bei den allgemeinen Sterbefällen waren es ca. 45%. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Das unterstreicht noch einmal eindrücklich, wie stark das Lebensalter die Gefährdung bestimmt und als beherrschender Risikofaktor wirkt. Angesichts der Altersverteilung zeigt es auch, dass die Todesfallzahlen nur mittels differenzierter Maßnahmen gesenkt werden können. Ein pauschaler Lockdown wirkt auf die exponierten Gruppen nur höchst indirekt, belastet aber alle gesellschaftlichen Gruppen, insbesondere auch die große Mehrheit der kaum durch das Virus Gefährdeten. Jene sind vor allem Betroffene der unmittelbaren Lockdownfolgen. Gezielt auf den Schutz der Hauptrisikogruppen (Heimbewohner, über 80-Jährige mit Vorerkrankungen) abgestimmte Maßnahmen machen daher sehr viel mehr Sinn, weil sie dort ansetzen und wirken können, wo die Gefährdung tatsächlich vorliegt.

Das durchschnittliche Covid-19-Sterbealter liegt per Datenstand 26.01.2021 bei etwa 83 Jahren. Bezüglich der allgemeinen Sterbefälle haben wir hier einen Wert von etwas mehr als 80 Jahren zu verzeichnen.

Altersverteilung in Bezug auf die Bevölkerungsstruktur

Aus den vorstehenden Grafiken geht schon klar hervor, dass sich die Masse der Covid-19-Todesfälle auf eine ziemlich kleine Bevölkerungsgruppe verteilt. Im Folgenden wird das noch etwas präziser herausgearbeitet. Abb. 8 stellt die Verteilung der Covid-19-Sterbefälle in Abhängigkeit vom Alter im Vergleich zur Altersverteilung in der Bevölkerung dar:

Blaue Kurve (linke Achse): Anteil der Menschen in der Bevölkerung mit einem Alter >= x. Beispiel: x = 80, Bevölkerungsanteil knapp 7%.

Rote Kurve (rechte Achse): Anteil der Covid-19-Toten, die in einem Alter >= x verstorben sind. Beispiel: x = 80, Anteil an allen Corona-Sterbefällen knapp 70%.

Der Schnittpunkt der beiden Kurven liegt etwa bei einem Alter von x = 72. Hierfür gilt Folgendes: Ca. 14% der Menschen sind älter als 72, zugleich entfallen auf diesen Bevölkerungsanteil 86% der Covid-19-Toten.

Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich.

Abbildung 8: Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich. Blaue Kurve (linke Achse): Anteil der Menschen in der Bevölkerung mit einem Alter >= x. Rote Kurve (rechte Achse): Anteil der Covid-19-Toten, die in einem Alter >= x verstorben sind. Man beachte, dass die Skalierung der rechten Achse von oben nach unten verläuft. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Einige Eckdaten aus der Grafik:

  • Auf die ältesten 1% der Menschen (d.h., Alter >= 90) entfallen 22% der Coronatoten.
  • Die ältesten 5% der Menschen (etwa >= 83 Jahre) verzeichnen 58% der Coronatoten.
  • Unter den ältesten 10% der Menschen (etwa >= 76 Jahre) finden sich 80% der Coronatoten.
  • Auf die jüngere Hälfte der Menschen (<= 46 Jahre) entfallen 1% der Coronatoten.
  • Die Hälfte der Coronatoten entfällt auf die 4% Ältesten der Bevölkerung (d.h., Alter >= 84 Jahre).
  • Etwa 90% der Coronatoten entfallen auf die 17% Ältesten der Bevölkerung.

Nach dem Vorstehenden liegt der Medianwert der „an oder mit“ Covid-19-Verstorbenen bei 84 Jahren.

Finale Darstellung der Asymmetrie

Wie stark asymmetrisch die Verteilung der Todesfallzahlen ist, kann man am besten der sogenannten Lorenzkurve entnehmen (s. Abb. 9).

Auf der y-Achse ist der prozentuale Anteil der Covid-19-Toten aufgetragen (von oben nach unten). Die x-Achse läuft über den Prozentanteil der Ältesten in der Bevölkerung (von rechts nach links).

Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich als Lorenzkurve.

Abbildung 9: Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich als Lorenzkurve. Auf der y-Achse ist der prozentuale Anteil der Covid-19-Toten aufgetragen (von oben nach unten). Die x-Achse läuft über den Prozentanteil der Ältesten in der Bevölkerung (von rechts nach links). Die Kurve zeigt eindrucksvoll, wie ungleich die Todesfallzahlen über die Altersstruktur der Bevölkerung verteilt sind. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Die obigen Beispiele kann man dieser Grafik unmittelbar entnehmen:

  • Auf die ältesten 1% der Menschen entfallen 22% der Coronatoten.
  • Unter den ältesten 10% der Menschen (etwa >= 76 Jahre) finden sich 80% der Coronatoten.
  • Auf die ältere Hälfte der Bevölkerung entfallen 99% der Coronatoten.

Als Maß für die Ungleichverteilung der Todesfallzahlen über die Altersstruktur der Bevölkerung kann man den Gini-Koeffizienten heranziehen. Bezogen auf Abb. 9 misst er die relative Größe der Fläche zwischen der gestrichelten Linie und der roten Kurve. Im vorliegenden Falle beträgt der Gini-Koeffizient etwa 85. Dieser Wert steht für eine stark ungleiche Verteilung. Bei einer Gleichverteilung würde der Wert bei 0 liegen (gestrichelte Linie und rote Kurve wären dann deckungsgleich). In diesem Falle würden auf die p Prozent Jüngsten bzw. Ältesten auch p Prozent der Toten entfallen. Wenn ausschließlich die Allerältesten sterben würden, wäre der Gini-Wert knapp unter 100. Allzu weit entfernt davon sind wir im konkreten Falle indes nicht.

Nehmen wir als Vergleich die Verteilung der Einkommen über die Bevölkerung. Bezüglich der Einkommen in Deutschland beläuft sich der Gini-Koeffizient auf etwa 30. Die Einkommen sind also sehr viel gleichmäßiger verteilt als die Corona-Todesfallzahlen. Trotzdem wird das als hochproblematisch angesehen und es werden vielfach Vorschläge gemacht, den Reichen zu nehmen und den Armen zu geben. Allerdings ist bisher ist noch niemand mit der Idee gekommen, die Not der 10% Ärmsten dadurch lindern zu wollen, dass man das Einkommen ALLER kürzt.

Es liegt auf der Hand: Wenn man die Armen reicher machen will, dann braucht man dafür zielgenau passende Maßnahmen. Es ändert sich absolut nichts an ihrer Situation, wenn man allen gleichermaßen gibt oder nimmt. Genauso verhält es sich in der Pandemie im Hinblick auf die unterschiedlichen Gefährdungslagen der Älteren im Vergleich zum großen Rest der Bevölkerung.

Die Corona-Pandemie ist eine „Paläodemie“

Insbesondere die Kurve in Abb. 9 und die beiden Kurven in Abb. 8 zeigen eindrucksvoll, in wie extremer Weise ungleich die Todesfallzahlen über die Altersstruktur der Bevölkerung verteilt sind.

Die Corona-Epidemie heißt deswegen Pandemie, weil sie nicht regional begrenzt und global verbreitet ist, also „überall“ (pan = griechisch für umfassend, total, ganz) wirkt. Nach der vorstehenden Analyse muss man fast schon zum Schluss kommen, dass wir es hier weniger mit einer Pandemie als vielmehr mit einer „Paläodemie“ zu tun haben, also einer Epidemie, die vor allem alte Menschen „mit voller Wucht“ trifft (paläo = griechisch für alt).

Man muss den Eindruck gewinnen, dass dies von den Entscheidern allenfalls lethargisch zur Kenntnis genommen wird, nur um dann ungerührt völlig undifferenzierte Vorsorgemaßnahmen zu ergreifen, die dieses Wissen gänzlich ignorieren. Wie sich nun schon seit Monaten zeigt, erreicht man damit nur wenig.

Die Lockdown-Medizin macht nicht gesund, hat aber fatale Nebenwirkungen.

Resümee

Wir haben gesehen: Insbesondere die Älteren in der Bevölkerung werden Opfer des Virus, die Jüngeren dagegen sind kaum berührt. Deswegen sind die undifferenzierten Maßnahmen á la Lockdown, die die gesamte Bevölkerung in Haft nehmen und das gesellschaftliche Leben größtenteils lahmlegen weder verhältnismäßig noch können sie – jenseits der Sandkastenspiele von praxisfremden Virologen – überhaupt eine durchgreifende Wirkung entfalten. Diese Maßnahmen gehen ins Leere, was man auch daran erkennen kann, dass das Durchschnittsalter der „an oder mit“ Covid-19-Verstorbenen noch zu Beginn des aktuellen Lockdown mit etwa 81 Jahren (per 01.12.2020) fast 2 Jahre niedriger lag als aktuell per Ende Januar 2021.

Die Strategie des irrationalen politischen Aktionismus unter dem starrsinnigen Dogma einer vermeintlichen „Generalvorsorge“ ist gescheitert! Vor allem muss man festhalten: Das ist nicht wissenschaftlich. Es ist eine kleingeistige Mischung aus Mutlosigkeit und mangelnder Fantasie.

Der Lockdown trifft gleichermaßen alle. Faktisch sind indessen die Jüngeren – Kinder, Schüler, Familien, Selbständige, Künstler – sogar sehr viel stärker betroffen als die Älteren. Die Folgewirkungen für die jüngere Generation sind absehbar dramatisch. Dies wird von den Entscheidern in der Politik aber offenbar billigend in Kauf genommen.

In dieser „Paläodemie“ ist das Risiko der Älteren um Größenordnungen höher, dennoch bleiben die Maßnahmen auch nach fast einem Jahr Pandemiedauer völlig ungezielt. Das darf so keinen Bestand haben. Es ist unabdingbar, einen stärkeren Fokus auf den Schutz der am meisten Gefährdeten zu nehmen, statt die Gesellschaft insgesamt dauerhaft lahmzulegen und damit massive und möglicherweise langfristig wirkende Kollateralschäden in ungekanntem Ausmaß heraufzubeschwören.

Und am Ende gehört dazu auch die Erkenntnis, dass Leben nicht um jeden Preis geschützt werden kann. Es ist nicht nur unmöglich, es ist geradezu vermessen und Ausdruck technokratischen Machbarkeitswahns.


Quellen:

[1] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 26.01.2021 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Jan_2021/2021-01-26-de.pdf?__blob=publicationFile

[2] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 01.12.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Dez_2020/2020-12-01-de.pdf?__blob=publicationFile

[3] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 26. Januar 2021). Statista

https://de.statista.com/statistik/daten/studie/1103904/umfrage/corona-infektionen-covid-19-in-deutschland-nach-altersgruppe/#professional

[4] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 26. Januar 2021). Statista

https://de.statista.com/statistik/daten/studie/1104173/umfrage/todesfaelle-aufgrund-des-coronavirus-in-deutschland-nach-geschlecht/

[5] Bevölkerung – Zahl der Einwohner in Deutschland nach Altersgruppen am 31. Dezember 2019. Statista

https://de.statista.com/statistik/daten/studie/1112579/umfrage/bevoelkerung-in-deutschland-nach-altersgruppen/

[6] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S05-Altersspezifische-Sterbewahrscheinlichkeiten-Maenner-ab-1871.html?nn=9992070

[7] Altersspezifische Sterbewahrscheinlichkeiten der Frauen in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S06-Altersspezifische-Sterbewahrscheinlichkeiten-Frauen-ab-1871.html?nn=9992070

[8] Sterbetafel 2017/2019 – Ergebnisse aus der laufenden Berechnung von Periodensterbetafeln für Deutschland und die Bundesländer 2020. DESTATIS – Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Publikationen/Downloads-Sterbefaelle/periodensterbetafel-erlaeuterung-5126203197004.pdf?__blob=publicationFile

[9] Anzahl der Sterbefälle in Deutschland nach Altersgruppe im Jahr 2018. Statista

https://de.statista.com/statistik/daten/studie/1013307/umfrage/sterbefaelle-in-deutschland-nach-alter/

[10] Zwei Drittel der Corona-Toten betreffen Altenheime. hessenschau

https://www.hessenschau.de/gesellschaft/zwei-drittel-der-corona-toten-im-november-betreffen-altenheime,corona-altenheim-tote-100.html

[11] Mehr als die Hälfte aller Corona-Toten aus Heimen

https://www.sr.de/sr/home/nachrichten/politik_wirtschaft/coronatote_alten-_und_pflegeheime_100.html

[12] Bis zu 86 Prozent der Corona-Toten in Deutschland kommen aus Pflegeheimen

https://www.bz-berlin.de/deutschland/bis-zu-86-prozent-der-corona-toten-in-deutschland-kommen-aus-pflegeheimen

[13] Fast 90 Prozent der Corona-Toten aus Heimen

https://www.n-tv.de/panorama/Fast-90-Prozent-der-Corona-Toten-aus-Heimen-article22245741.htmlr

[14] Fast zwei Drittel sterben im Heim

https://taz.de/Coronatote-in-Berlin/!5747843/

[15] Nach Krisengipfel: Virologe mit scharfer Corona-Kritik an Merkel und Söder – „Weit weg von Realität“

https://www.merkur.de/lokales/muenchen/lockdown-corona-bayern-virologe-corona-strategie-merkel-soeder-krise-gipfel-zr-90175293.html

[16] Corona-Lockdown bis Sommer? Just der Wirtschaftsminister schließt nichts aus

https://www.merkur.de/politik/coronavirus-lockdown-verlaengerung-peter-altmaier-deutschland-mutation-cdu-variante-sommer-90186104.html

[17] Scharfe Kritik an Corona-Politik und Experten – „Andere Sichtweisen offenbar unerwünscht“

https://www.merkur.de/politik/corona-deutschland-gipfel-merkel-laender-massnahmen-pandemie-kritik-experten-wissenschaftler-auswahl-90174423.html

[18] Das „Vorsorgeprinzip“ der Kanzlerin in der Pandemie ist einseitig

https://www.handelsblatt.com/meinung/kommentare/kommentar-das-vorsorgeprinzip-der-kanzlerin-in-der-pandemie-ist-einseitig-/26833548.html

[19] Das Coronavirus: Harmlos? Bedrohlich? Tödlich?

https://www.linkedin.com/pulse/das-coronavirus-harmlos-bedrohlich-t%C3%B6dlich-hieronymus-fischer

[20] Aktuelles zu Corona

https://www.linkedin.com/pulse/aktuelles-zu-corona-hieronymus-fischer/

Wie verlässlich sind Corona-Tests?

Der Fall des vor einigen Monaten fälschlicherweise positiv auf Corona getesteten Serge Gnabry vom FC Bayern hat auch einer breiteren Öffentlichkeit deutlich gemacht, dass die (PCR-) Corona-Tests mitnichten so zuverlässig sind, wie das vielfach angenommen und auch von Politikern und Medizinern gerne verbreitet wird. Selbst bei einer formal zunächst hochverlässlich klingenden Testsensitivität und -spezifität von 98% oder 99% sind die resultierenden Testergebnisse alles andere als sicher. Das hat vor allem mathematische Gründe.

Die resultierende Ungenauigkeit ist keine spezifische Schwäche des PCR-Tests an sich, wobei hier in der Anwendung durchaus noch einige zusätzliche Fallstricke warten, die die Testungenauigkeit noch weiter steigern können. Durch die Aussagen von Medizinern und Sprechern von Laboren, die Tests hätten nur eine Fehlerrate von 1%, wird ein falscher Eindruck erweckt. Wie gesagt, das hat wenig mit Medizin oder gar Virologie zu tun. Die Problematik besteht grundsätzlich bei jedem Test gegebener Sensitivität und Spezifität, z.B. auch dann, wenn Schrauben auf Passgenauigkeit überprüft werden.

Nehmen wir ein Beispiel: Testsensitivität 99%, Testspezifität 99%. Das klingt nach fast absoluter Sicherheit. Der Laie meint, damit seien 99% aller positiven Testergebnisse verlässlich und nur 1% falsch. Dem ist leider nicht so. Tatsächlich könnten hier bis zu 50% aller Positiv-Fälle in Wahrheit negativ sein.

Bevor wir dies aufklären, sollen noch die beiden Fachbegriffe kurz erläutert werden.

Sensitivität und Spezifität

Testsensitivität 100% bedeutet Folgendes: Wenn eine Person Virusträger ist, dann zeigt dies der Test mit Sicherheit an. Jeder Infizierte wird demnach als solcher erkannt. Bei einer Testsensitivität von p wird das Virus durch den Test entsprechend mit der Wahrscheinlichkeit p gefunden.

Testspezifität 100% bedeutet Folgendes: Wenn eine Person kein Virusträger ist, dann wird dies vom Test mit Sicherheit erkannt. Jeder Nicht-Infizierte wird demnach eindeutig als gesund identifiziert. Bei einer Testspezifität von q wird die Abwesenheit des Virus vom Test entsprechend mit der Wahrscheinlichkeit q erkannt.

Ein simples Beispiel

Um zu verstehen, wie es trotz der hohen Verlässlichkeit des Testverfahrens zu dieser relativ großen Ungenauigkeit bezüglich der positiven Testergebnisse kommt, betrachten wir ein konkret nachvollziehbares Beispielszenario, in dem die betreffenden Wahrscheinlichkeiten unmittelbar auf der Hand liegen.

Nehmen wir einige Blätter kariertes Papier und schneiden davon 101 quadratische Zettel mit je 5 cm Seitenlänge heraus. Auf jedem der kleinen Papierbögen haben wir nun 10×10 = 100 kleine Quadrate á 5 mm Seitenlänge. Nun nehmen wir die Zettel und färben jeweils genau eines der kleinen Quadrate schwarz ein. Auf dem ersten Zettel das erste Quadrat oben links, auf dem zweiten Zettel das zweite Quadrat in der Reihe, usw., so dass am Ende auf jedem Zettel ein anderes Quadrat eingefärbt ist. Nachdem wir 100 Zettel derart bearbeitet haben, färben wir den letzten (101-ten) Zettel komplett schwarz. Nun überkleben wir die Zettel mit einer abziehbaren intransparenten Folie, die gleichfalls mit einem 5×5 mm Karomuster bedruckt ist.

Abbildung 1: Das Beispielszenario (s. Text)

Wenn wir nun einen der Zettel 1 – 100 zur Hand nehmen, zufällig eines der 100 darauf bedruckten kleinen Quadrate auswählen und es abziehen, befindet sich darunter entweder ein weißes oder ein schwarzes Quadrat. Nachdem jeder der Zettel genau ein schwarzes Quadrat trägt, ist die Wahrscheinlichkeit, auf ein solches Quadrat zu stoßen 1:100. In 99 von 100 Fällen ist das freigelegte Quadrat weiß. Beim 101-ten Zettel sind alle Quadrate schwarz, demzufolge finden wir dort mit 100%-iger Wahrscheinlichkeit ein schwarzes Quadrat.

Die Analogie zum Corona-Testszenario

Worin besteht nun der Querbezug zum Testszenario bei einem Corona-Test? Ganz einfach: Der eine durchgehend schwarz eingefärbte Zettel entspricht einem mit Corona infizierten Probanden. Ihn zu finden ist die Aufgabe des Tests. Der Test ist so konstruiert, dass wir diesen Zettel mit 100%-iger Sicherheit finden. Demzufolge haben wir hier eine Testsensitivität von 100%.

Die übrigen 100 weißen Zettel mit nur einem schwarz eingefärbten Quadrat stehen für die große Mehrheit der nicht infizierten Probanden. Wenn wir einen solchen Zettel nehmen und ein beliebiges Quadrat freilegen, sehen wir dort mit 99%-iger Wahrscheinlichkeit ein weißes Quadrat. In diesem Wert spiegelt sich die Testspezifität wider: Das ist die Wahrscheinlichkeit dafür, dass der entsprechende Zettel nicht gänzlich schwarz ist bzw., dass ein Proband nicht infiziert ist.

Nun stellen wir uns der Aufgabe, unter den 101 Zetteln den komplett schwarz eingefärbten zu finden. Dazu dürfen wir ein beliebiges quadratisches Feld aussuchen, die Zettel nacheinander zur Hand nehmen und das betreffende Feld freilegen. Was passiert?

Die Ungenauigkeit solcher Tests ist kein spezifisches Corona-Problem

Genau einer der 100 weißen Zettel hat an der freigelegten Stelle ein schwarzes Quadrat, die 99 anderen zeigen ein weißes Quadrat. Der eine schwarze Zettel (den wir aber nicht als solchen erkennen) zeigt natürlich ebenfalls ein schwarzes Quadrat. Wir haben also 2 Zettel mit schwarzen Quadraten und können nicht entscheiden, welches davon der gänzlich schwarze Zettel ist. Die Falsch-Positiv-Rate beträgt somit 50%. Genau die gleiche Situation haben wir bei einem Corona-Test mit einer 100%-igen Testsensitivität und einer 99%-igen Testspezifität unter der Annahme von 1% tatsächlich positiven Probanden.

Nun skalieren wir das beschriebene Szenario auf die Situation mit einer Million weißen und schwarzen Zetteln. Dazu multiplizieren wir einfach mit dem Faktor 10.000. Wir finden sodann 20.000 Zettel mit einem schwarzen Quadrat. Da tatsächlich nur 10.000 Zettel wirklich schwarz sind, haben wir somit weitere 10.000 die fälschlicherweise als schwarz angesehen werden.

Übertragen auf das Testszenario beim Corona-Test mit 100%-iger Testsensitivität und 99%-iger Testspezifität entspricht dies 20.000 positiv Getesteten bei nur 10.000 tatsächlichen Virenträgern und damit einer Falsch-Positiv-Rate von 50%. Die realen Verhältnisse dürften nicht allzu weit davon entfernt liegen.

Konkrete Zahlenwerte

Wenn wir davon ausgehen, dass 2% der Bevölkerung Träger des Coronavirus sind, dann liegt ein solcher Test (mit Testsensitivität = 99% und Testspezifität = 99%) im Hinblick auf die Gesamtbevölkerung in 33% aller Positivfälle falsch. D.h., jeder dritte positiv Getestete ist in Wahrheit nicht infiziert. Und wenn die Testspezifität „nur“ 98% beträgt, was ja immer noch sehr vertrauenswürdig klingt, dann ist sogar nur jeder zweite Positivfall tatsächlich ein Virusträger.

Der Fall Gnabry ist also keineswegs die große Ausnahme. Er zeigt auch, ein singulärer Positivtest ist allenfalls ein Indikator für eine mögliche Infektion und ruft förmlich nach einem Zweittest.

Was bringen Antigen (Schnell-) Tests?

Für sehr gute Antigentests werden eine Testsensitivität von 95% und eine Testspezifität von 97% angegeben. Unter den gleichen Bedingungen wie oben (also die Annahme, tatsächlich seien 2% der Getesteten Virenträger) resultiert ein solcher Antigentest in einer Falsch-Positivrate von 60% (s. Abb. 2). Weniger gute Antigentests mit einer Testsensitivität von 90% und einer Testspezifität von 90% führen gar zu einer Falsch-Positivrate von 85% und sind damit bezüglich der Positivaussage fast wertlos.

In Abb. 2 sind die Zusammenhänge bei Variation der Testspezifität von 90% bis 100% und Prävalenzen von 1% bis 10% grafisch dargestellt.

Abbildung 2: Resultierende Falsch-Positiv-Rate in Abhängigkeit von der Testspezifität für Prävalenzen von 1%, 2%, 5% und 10%. Die Testsensitivität wurde hier zu 100% angenommen. Bei einer niedrigeren Sensitivität verschieben sich die Kurven für die Falsch-Positiv-Rate noch etwas nach oben, allerdings ist dieser Effekt bei Sensitivitäten über 90% noch relativ klein.

Was die Beispiele ebenfalls enthüllen: Wahllose Tests sind wenig sinnvoll und richten wahrscheinlich mehr Schaden an, als sie Nutzen stiften. Tests mit einer Spezifität von 97% und darunter sind allenfalls in Bezug auf Risikogruppen mit einer hohen Prävalenz (höhere Wahrscheinlichkeit, tatsächlich infiziert zu sein, z.B. > 10% bis 30%) von Nutzen, denn nur in diesem Fall sinkt die Wahrscheinlichkeit für ein Falsch-Positives Testergebnis unter 20%.

Immerhin ist die Negativaussage (Proband ist nicht infiziert) in all diesen Beispielen mit hoher Wahrscheinlichkeit (95% bis über 99%) zutreffend. Wer also ein negatives Testergebnis bekommt, der darf darauf vertrauen. Natürlich vorausgesetzt, der Test wurde medizinisch und labortechnisch adäquat durchgeführt.

Faustregel

Man kann sich den prinzipiellen Zusammenhang leicht merken.

  • Wenn die relative Häufigkeit für das Auftreten eines bestimmten gesuchten Merkmals (also die Prävalenz) in einer vorgegebenen Gesamtheit p Prozent beträgt, dann hat ein Testverfahren, für das gilt Sensitivität = Spezifität = 100 – p Prozent eine Falsch-Positiv-Rate von exakt 50%.

Beispiel 1: Prävalenz 1%, Sensitivität = Spezifität = 99%, Falsch-Positiv-Rate = 50%.

Beispiel 2: Prävalenz 5%, Sensitivität = Spezifität = 95%, Falsch-Positiv-Rate = 50%.

Oft ist die Sensitivität nahe 100%. In diesem Falle kann man die Falsch-Positiv-Rate leicht anhand der folgenden Faustregel abschätzen.

  • Wenn die relative Häufigkeit für das Auftreten eines bestimmten gesuchten Merkmals (also die Prävalenz) in einer vorgegebenen Gesamtheit p Prozent beträgt, dann hat ein Testverfahren der Genauigkeit 100 – p Prozent (das ist die Testspezifität) eine Falsch-Positiv-Rate von ca. 50%. Für Prävalenzen bis zu 10% ist das eine sehr gute Näherung. Die Sensitivität hat nur einen geringen Einfluss.

Beispiel 3: Prävalenz 2%, Spezifität = 98%, Falsch-Positiv-Rate = 49,5%, Näherungsfehler 0,5%.

Beispiel 4: Prävalenz 10%, Sensitivität = 100%, Spezifität = 90%, Falsch-Positiv-Rate = 47,4%, Näherungsfehler 2,6%.