Schlagwort-Archive: Gini-Koeffizient

Die Corona-Pandemie: Alter ist der dominierende Risikofaktor

Strategie des planlosen Managements

Wenn man die Infektions- und Todesfallzahlen sowie die abgeleiteten Sterbewahrscheinlichkeiten ohne und mit Corona analysiert, wird vor allem eines klar: Das Management der Corona-Krise ist ein Fiasko. Dieses Urteil steht in einem denkbar krassen Kontrast zur Selbsteinschätzung der verantwortlichen Politiker. Trotz der Lage ist auch der Zuspruch der Mehrheit der Menschen nach wie vor hoch. Das hängt damit zusammen, dass wir in der politischen Kommunikation und der Medienberichterstattung zu Corona vor allem mit einem vordergründigen Alarmismus konfrontiert werden.

Mit Hysterie und Angstmache werden wir die Krise aber nicht bewältigen. Zuallererst brauchen wir eine auf nüchterner Faktenanalyse beruhende klare Kommunikation und die Abkehr von einer Politik der Panikmache.

Es gibt keine Strategie für eine nachhaltige Senkung der Todesfallzahlen im Einklang mit der Aufrechterhaltung des gesellschaftlichen und wirtschaftlichen Lebens. Politik und Medien gleiten planlos von einem Lockdown zum nächsten und lassen sich leiten vom Prinzip Hoffnung. Hoffnung auf Impfstoffe, die, wie sich nun zeigt, für die Bürger der EU und speziell auch Deutschlands auf absehbare Zeit nicht in ausreichenden Mengen zur Verfügung stehen werden. Das ist das Ergebnis europäischen Missmanagements unter der deutschen EU-Präsidentschaft. Und es ist das Resultat von nicht wahrgenommener Verantwortung: Weil man aus der Impfstoffbeschaffung eine EU-Erfolgsstory machen wollte, wurden mögliche nationale Vorsorgemaßnahmen nicht getroffen. Tausende vermeidbare Todesfälle sind die Folge.

Wie steht es um den Schutz der Älteren?

Das Ergreifen vernünftiger Maßnahmen setzt voraus, dass man die Realität vorurteilsfrei zur Kenntnis nimmt. Zwar ist allgemein bekannt, dass überwiegend Ältere von schweren Covid-19-Krankheitsverläufen betroffen sind, dennoch findet dies in den Maßnahmen kaum Berücksichtigung. Im Folgenden soll der Alterseinfluss deswegen in aller Schärfe herausgearbeitet werden.

Ältere über 80 sind im Vergleich zum Anteil an der Bevölkerung weit überproportional häufig infiziert und stellen fast 70% der Toten (s. Abb. 1) mit weiter steigender Tendenz (im Zuwachs sind es sogar über 70%). Weniger als 3,5% der Covid-19-Toten waren unter 60.

Das Infektionsrisiko liegt für die Altersgruppe 80+ mit 10,13% der Infizierten bei nur 6,83% Bevölkerungsanteil fast 50% über dem Durchschnitt. Das zeigt insbesondere, dass die Hochbetagten, trotz der typischerweise geringen Kontakthäufigkeit, nur höchst unzureichend vor Infektionen geschützt werden. Die zahlreichen Ausbrüche in Heimen untermauern dies.

Wenn man die Zahlen mit den Vorwochen und Vormonaten vergleicht, erkennt man, dass das Risiko für die Älteren sogar im Lockdown unvermindert weiter steigt.

Covid-19 Infizierte und Todesfälle pro Altersgruppe.

Abbildung 1: Covid-19 Infizierte und Todesfälle pro Altersgruppe. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Sterberisiko nach Altersgruppen

Schauen wir uns das Sterberisiko in den Altersgruppen an (s. Abb. 2): Die Covid-19-Mortalität ist in der Altersgruppe 80+ mit 650 Toten pro 100.000 Personen etwa 8-mal größer als für die 60-79-Jährigen (78 Tote pro 100.000 Personen) und sogar 200-mal größer als für die 0-59-Jährigen (mit knapp 3 Toten pro 100.000 Personen der Altersgruppe).

Wenn die Infektionsrate der Altersgruppe 80+ auf dem Niveau des Durchschnitts der Bevölkerung liegen würde, dann hätten wir etwa 18.000 Covid-19-Tote weniger zu verzeichnen. Der Befund macht klar, dass pauschale Maßnahmen nach dem Gießkannenprinzip zum Scheitern verurteilt sind. Ohne effektiven Schutz der Meistgefährdeten geht es nicht. Maßnahmen sind effektiv und verhältnismäßig nur dann, wenn sie die vulnerablen Gruppen in den Fokus nehmen. Und die „vulnerablen“ Gruppen, das sind nicht 27 oder 30 Millionen, also die Gruppe der Menschen über 60, wie uns Politiker gerne erklären, es sind insbesondere die Menschen über 80, also etwa 5,7 Mio. Personen. Eine Sonderstellung nehmen darunter die Bewohner von Alten- Pflegeheimen ein. Sie sind besonders gefährdet (s. Abb. 3) und werden dennoch nicht konsequent geschützt. 

Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe.

Abbildung 2: Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Tatsächlich kommt eine erhebliche Anzahl der etwa 53.000 Coronatoten (per 26.01.2021) aus Heimen, obwohl dort nur etwa 850.000 Menschen leben. In der Altersgruppe 80+ mit 37.000 Covid-19-Toten macht dieser Personenkreis etwa die Hälfte der Sterbefälle aus. In einzelnen Bundesländern waren zweitweise gar bis zu 90% der Corona-Todesfälle in Heimen zu verzeichnen. Es liegt auf der Hand, dass ein allgemeiner Lockdown in dieser Hinsicht kaum etwas bewirken kann. Das weisen die Daten klar aus.

Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe.

Abbildung 3: Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. Die Differenzierung nach Heimbewohnern beruht auf der begründeten Abschätzung, dass etwa 50% der Todesfälle in der Altersgruppe 80+ auf die Hochbetagten in Heimen zurückgehen. Unter allen Todesfällen sind es mindestens ein Drittel. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Die Hochbetagten in den Heimen werden vor Infektionen nicht geschützt. Sie sind überproportional häufig infiziert. So ist das seit fast einem Jahr. Mehr als 10.000 Todesfälle gehen allein auf dieses Konto.

Alter ist der Hauptrisikofaktor

Aus dem Vorstehenden geht klar hervor, dass die Alten mit großem Abstand das höchste Risiko tragen, dabei aber durch die ergriffenen Maßnahmen nur unzureichend geschützt werden. In den folgenden beiden Grafiken wird das noch schärfer herausgearbeitet. Der Kurvenverlauf zeigt die spezifische Corona-Mortalität in Todesfällen pro 100.000 Personen im entsprechenden Lebensalter.

Man entnimmt der ersten Grafik (s. Abb. 4), wie enorm stark das Alter direkt das Covid-19-Sterberisiko beeinflusst. Beispiel: Für 80-Jährige haben wir einen Wert zwischen 200 und 300 pro 100.000, für 90-Jährige schon von über 800.

In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe.

Abbildung 4: In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Ganz anders bei den Jüngeren. Hier sind die Werte in der Altersgruppe unter 60 so niedrig, dass sie kaum mehr abgelesen werden können. In der zweiten Grafik (s. Abb. 5) daher dieselbe Information in logarithmischer Darstellung aufgetragen. Wie man der Abbildung entnimmt, bleibt die Mortalität bis zum Alter von knapp 40 noch unter 1:100.000.

In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. Hier in logarithmischer Darstellung.

Abbildung 5: In exponentieller Interpolation aus summarischen Grunddaten auf Einzeljahre heruntergerechnete Corona-Mortalität in Todesfällen pro 100.000 Personen der Altersgruppe. Hier in logarithmischer Darstellung. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

In guter Annäherung steigt das Sterberisiko ab 40 exponentiell etwa mit dem Faktor 10 pro 20 Lebensjahren. Der formelmäßige Zusammenhang kann so beschrieben werden:

\begin{equation} \textit{Mortalität} \approx 10^{ \frac { Alter\, – \, 36 }{ 18 } } \end{equation}

Eine noch bessere Approximation zeigt die grau-punktierte Linie (s. Abb. 5). Sie gehorcht der Formel:

\begin{equation} \textit{Mortalität} = 0.0111 \cdot e^{ 0.125 \, \cdot Alter } \end{equation}

Es wird damit nochmals unterstrichen: Das Risiko, sich zu infizieren und an Covid-19 zu versterben ist in hohem Maße vom Alter abhängig.

Die Gefährdung wächst exponentiell mit steigendem Alter

Bei dieser Sachlage kann es kaum mehr verwundern, dass die von der Politik ergriffenen pauschalen Maßnahmen nicht den gewünschten Effekt zeitigen. Mittlerweile fordern daher auch schon viele unabhängige Experten, den Fokus viel stärker auf den Schutz der Hauptrisikogruppen zu legen. Überdies muss man hier differenzieren: Die vulnerablen Gruppen sind, wie wir oben gesehen haben, zunächst die Bewohner von Heimen (etwa 850.000 Personen und die über 80-Jährigen (in Summe etwa 5,7 Mio.), es sind nicht pauschal alle über 60-Jährigen. Die meisten Angehörigen der Altersgruppe 60-79 können für sich selbst sorgen: In dieser Gruppe liegt das Infektionsrisiko signifikant unter dem Durchschnitt der Bevölkerung (etwa -30%, s. Abb. 1). Eigenverantwortung ist ein extrem stark wirksamer Schutzfaktor.

Altersverteilung im Vergleich zu allen Sterbefällen

Wie wir gesehen haben, sind Ältere besonders von Corona betroffen. Dies zeigt sich auch bei Betrachtung der Altersverteilung der Covid-19-Sterbefälle im Vergleich zur Verteilung der Sterbefälle aufgrund anderer Ursachen. Grundsätzlich ist klar, dass das allgemeine Sterberisiko mit dem Alter ansteigt. Das Coronavirus differenziert sogar noch stärker nach Alter. Man kann dies leicht den beiden Kurven in Abb. 6 entnehmen: Die blaue Kurve zeigt die Verteilung der allgemeinen Sterbefälle nach Lebensalter. Die rote Kurve stellt die Altersverteilung der Covid-19-Sterbefälle dar.

Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen.

Abbildung 6: Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen. Für ein vorgegebenes Alter x gibt der y-Wert den relativen Anteil der Todesfälle in der Dekade x-5 bis x+5 Jahre an. Beispiel x = 85: y = 47%, also waren etwa 47% der Covid-19-Sterbefälle im Alter zwischen 80 und 90. Bei den allgemeinen Sterbefällen waren es nur ca. 37%. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Das Coronavirus ist eine stärkere „Altersdiskriminante“ als alle anderen Lebensrisiken zusammen

In Abb. 7 sind die kumulierten Inzidenzen aufgetragen. Greifen wir uns exemplarisch das Alter 80 heraus: 30% der Covid-19-Toten (s. rote Kurve) verstarben im Alter jünger als 80. Bei den allgemeinen Sterbefällen beläuft sich der Anteil indes auf fast 45%. Etwa 10% der Coronatoten waren jünger als 70, bei den sonstigen Todesfällen waren es mehr als doppelt so viel, nämlich fast 22%.

Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen.

Abbildung 7: Verteilung der Coronatoten nach Lebensalter im Vergleich mit allen Sterbefällen. Für ein vorgegebenes Alter x gibt der y-Wert den relativen Anteil der Todesfälle an, die in einem Alter jünger als x verstorben sind. Beispiel x = 80: y = 30%, also waren etwa 30% der Covid-19-Sterbefälle im Alter jünger als 80. Bei den allgemeinen Sterbefällen waren es ca. 45%. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Das unterstreicht noch einmal eindrücklich, wie stark das Lebensalter die Gefährdung bestimmt und als beherrschender Risikofaktor wirkt. Angesichts der Altersverteilung zeigt es auch, dass die Todesfallzahlen nur mittels differenzierter Maßnahmen gesenkt werden können. Ein pauschaler Lockdown wirkt auf die exponierten Gruppen nur höchst indirekt, belastet aber alle gesellschaftlichen Gruppen, insbesondere auch die große Mehrheit der kaum durch das Virus Gefährdeten. Jene sind vor allem Betroffene der unmittelbaren Lockdownfolgen. Gezielt auf den Schutz der Hauptrisikogruppen (Heimbewohner, über 80-Jährige mit Vorerkrankungen) abgestimmte Maßnahmen machen daher sehr viel mehr Sinn, weil sie dort ansetzen und wirken können, wo die Gefährdung tatsächlich vorliegt.

Das durchschnittliche Covid-19-Sterbealter liegt per Datenstand 26.01.2021 bei etwa 83 Jahren. Bezüglich der allgemeinen Sterbefälle haben wir hier einen Wert von etwas mehr als 80 Jahren zu verzeichnen.

Altersverteilung in Bezug auf die Bevölkerungsstruktur

Aus den vorstehenden Grafiken geht schon klar hervor, dass sich die Masse der Covid-19-Todesfälle auf eine ziemlich kleine Bevölkerungsgruppe verteilt. Im Folgenden wird das noch etwas präziser herausgearbeitet. Abb. 8 stellt die Verteilung der Covid-19-Sterbefälle in Abhängigkeit vom Alter im Vergleich zur Altersverteilung in der Bevölkerung dar:

Blaue Kurve (linke Achse): Anteil der Menschen in der Bevölkerung mit einem Alter >= x. Beispiel: x = 80, Bevölkerungsanteil knapp 7%.

Rote Kurve (rechte Achse): Anteil der Covid-19-Toten, die in einem Alter >= x verstorben sind. Beispiel: x = 80, Anteil an allen Corona-Sterbefällen knapp 70%.

Der Schnittpunkt der beiden Kurven liegt etwa bei einem Alter von x = 72. Hierfür gilt Folgendes: Ca. 14% der Menschen sind älter als 72, zugleich entfallen auf diesen Bevölkerungsanteil 86% der Covid-19-Toten.

Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich.

Abbildung 8: Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich. Blaue Kurve (linke Achse): Anteil der Menschen in der Bevölkerung mit einem Alter >= x. Rote Kurve (rechte Achse): Anteil der Covid-19-Toten, die in einem Alter >= x verstorben sind. Man beachte, dass die Skalierung der rechten Achse von oben nach unten verläuft. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Einige Eckdaten aus der Grafik:

  • Auf die ältesten 1% der Menschen (d.h., Alter >= 90) entfallen 22% der Coronatoten.
  • Die ältesten 5% der Menschen (etwa >= 83 Jahre) verzeichnen 58% der Coronatoten.
  • Unter den ältesten 10% der Menschen (etwa >= 76 Jahre) finden sich 80% der Coronatoten.
  • Auf die jüngere Hälfte der Menschen (<= 46 Jahre) entfallen 1% der Coronatoten.
  • Die Hälfte der Coronatoten entfällt auf die 4% Ältesten der Bevölkerung (d.h., Alter >= 84 Jahre).
  • Etwa 90% der Coronatoten entfallen auf die 17% Ältesten der Bevölkerung.

Nach dem Vorstehenden liegt der Medianwert der „an oder mit“ Covid-19-Verstorbenen bei 84 Jahren.

Finale Darstellung der Asymmetrie

Wie stark asymmetrisch die Verteilung der Todesfallzahlen ist, kann man am besten der sogenannten Lorenzkurve entnehmen (s. Abb. 9).

Auf der y-Achse ist der prozentuale Anteil der Covid-19-Toten aufgetragen (von oben nach unten). Die x-Achse läuft über den Prozentanteil der Ältesten in der Bevölkerung (von rechts nach links).

Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich als Lorenzkurve.

Abbildung 9: Altersverteilung der Coronatoten und der Bevölkerung insgesamt im Vergleich als Lorenzkurve. Auf der y-Achse ist der prozentuale Anteil der Covid-19-Toten aufgetragen (von oben nach unten). Die x-Achse läuft über den Prozentanteil der Ältesten in der Bevölkerung (von rechts nach links). Die Kurve zeigt eindrucksvoll, wie ungleich die Todesfallzahlen über die Altersstruktur der Bevölkerung verteilt sind. – Rohdaten vom RKI und von Statista nach Datenstand 26.01.2021.

Die obigen Beispiele kann man dieser Grafik unmittelbar entnehmen:

  • Auf die ältesten 1% der Menschen entfallen 22% der Coronatoten.
  • Unter den ältesten 10% der Menschen (etwa >= 76 Jahre) finden sich 80% der Coronatoten.
  • Auf die ältere Hälfte der Bevölkerung entfallen 99% der Coronatoten.

Als Maß für die Ungleichverteilung der Todesfallzahlen über die Altersstruktur der Bevölkerung kann man den Gini-Koeffizienten heranziehen. Bezogen auf Abb. 9 misst er die relative Größe der Fläche zwischen der gestrichelten Linie und der roten Kurve. Im vorliegenden Falle beträgt der Gini-Koeffizient etwa 85. Dieser Wert steht für eine stark ungleiche Verteilung. Bei einer Gleichverteilung würde der Wert bei 0 liegen (gestrichelte Linie und rote Kurve wären dann deckungsgleich). In diesem Falle würden auf die p Prozent Jüngsten bzw. Ältesten auch p Prozent der Toten entfallen. Wenn ausschließlich die Allerältesten sterben würden, wäre der Gini-Wert knapp unter 100. Allzu weit entfernt davon sind wir im konkreten Falle indes nicht.

Nehmen wir als Vergleich die Verteilung der Einkommen über die Bevölkerung. Bezüglich der Einkommen in Deutschland beläuft sich der Gini-Koeffizient auf etwa 30. Die Einkommen sind also sehr viel gleichmäßiger verteilt als die Corona-Todesfallzahlen. Trotzdem wird das als hochproblematisch angesehen und es werden vielfach Vorschläge gemacht, den Reichen zu nehmen und den Armen zu geben. Allerdings ist bisher ist noch niemand mit der Idee gekommen, die Not der 10% Ärmsten dadurch lindern zu wollen, dass man das Einkommen ALLER kürzt.

Es liegt auf der Hand: Wenn man die Armen reicher machen will, dann braucht man dafür zielgenau passende Maßnahmen. Es ändert sich absolut nichts an ihrer Situation, wenn man allen gleichermaßen gibt oder nimmt. Genauso verhält es sich in der Pandemie im Hinblick auf die unterschiedlichen Gefährdungslagen der Älteren im Vergleich zum großen Rest der Bevölkerung.

Die Corona-Pandemie ist eine „Paläodemie“

Insbesondere die Kurve in Abb. 9 und die beiden Kurven in Abb. 8 zeigen eindrucksvoll, in wie extremer Weise ungleich die Todesfallzahlen über die Altersstruktur der Bevölkerung verteilt sind.

Die Corona-Epidemie heißt deswegen Pandemie, weil sie nicht regional begrenzt und global verbreitet ist, also „überall“ (pan = griechisch für umfassend, total, ganz) wirkt. Nach der vorstehenden Analyse muss man fast schon zum Schluss kommen, dass wir es hier weniger mit einer Pandemie als vielmehr mit einer „Paläodemie“ zu tun haben, also einer Epidemie, die vor allem alte Menschen „mit voller Wucht“ trifft (paläo = griechisch für alt).

Man muss den Eindruck gewinnen, dass dies von den Entscheidern allenfalls lethargisch zur Kenntnis genommen wird, nur um dann ungerührt völlig undifferenzierte Vorsorgemaßnahmen zu ergreifen, die dieses Wissen gänzlich ignorieren. Wie sich nun schon seit Monaten zeigt, erreicht man damit nur wenig.

Die Lockdown-Medizin macht nicht gesund, hat aber fatale Nebenwirkungen.

Resümee

Wir haben gesehen: Insbesondere die Älteren in der Bevölkerung werden Opfer des Virus, die Jüngeren dagegen sind kaum berührt. Deswegen sind die undifferenzierten Maßnahmen á la Lockdown, die die gesamte Bevölkerung in Haft nehmen und das gesellschaftliche Leben größtenteils lahmlegen weder verhältnismäßig noch können sie – jenseits der Sandkastenspiele von praxisfremden Virologen – überhaupt eine durchgreifende Wirkung entfalten. Diese Maßnahmen gehen ins Leere, was man auch daran erkennen kann, dass das Durchschnittsalter der „an oder mit“ Covid-19-Verstorbenen noch zu Beginn des aktuellen Lockdown mit etwa 81 Jahren (per 01.12.2020) fast 2 Jahre niedriger lag als aktuell per Ende Januar 2021.

Die Strategie des irrationalen politischen Aktionismus unter dem starrsinnigen Dogma einer vermeintlichen „Generalvorsorge“ ist gescheitert! Vor allem muss man festhalten: Das ist nicht wissenschaftlich. Es ist eine kleingeistige Mischung aus Mutlosigkeit und mangelnder Fantasie.

Der Lockdown trifft gleichermaßen alle. Faktisch sind indessen die Jüngeren – Kinder, Schüler, Familien, Selbständige, Künstler – sogar sehr viel stärker betroffen als die Älteren. Die Folgewirkungen für die jüngere Generation sind absehbar dramatisch. Dies wird von den Entscheidern in der Politik aber offenbar billigend in Kauf genommen.

In dieser „Paläodemie“ ist das Risiko der Älteren um Größenordnungen höher, dennoch bleiben die Maßnahmen auch nach fast einem Jahr Pandemiedauer völlig ungezielt. Das darf so keinen Bestand haben. Es ist unabdingbar, einen stärkeren Fokus auf den Schutz der am meisten Gefährdeten zu nehmen, statt die Gesellschaft insgesamt dauerhaft lahmzulegen und damit massive und möglicherweise langfristig wirkende Kollateralschäden in ungekanntem Ausmaß heraufzubeschwören.

Und am Ende gehört dazu auch die Erkenntnis, dass Leben nicht um jeden Preis geschützt werden kann. Es ist nicht nur unmöglich, es ist geradezu vermessen und Ausdruck technokratischen Machbarkeitswahns.


Quellen:

[1] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 26.01.2021 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Jan_2021/2021-01-26-de.pdf?__blob=publicationFile

[2] Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) – 01.12.2020 – AKTUALISIERTER STAND FÜR DEUTSCHLAND. RKI

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Dez_2020/2020-12-01-de.pdf?__blob=publicationFile

[3] Corona-Infektionen (COVID-19) in Deutschland nach Altersgruppe und Geschlecht (Stand: 26. Januar 2021). Statista

https://de.statista.com/statistik/daten/studie/1103904/umfrage/corona-infektionen-covid-19-in-deutschland-nach-altersgruppe/#professional

[4] Todesfälle mit Coronavirus (COVID-19) in Deutschland nach Alter und Geschlecht (Stand: 26. Januar 2021). Statista

https://de.statista.com/statistik/daten/studie/1104173/umfrage/todesfaelle-aufgrund-des-coronavirus-in-deutschland-nach-geschlecht/

[5] Bevölkerung – Zahl der Einwohner in Deutschland nach Altersgruppen am 31. Dezember 2019. Statista

https://de.statista.com/statistik/daten/studie/1112579/umfrage/bevoelkerung-in-deutschland-nach-altersgruppen/

[6] Altersspezifische Sterbewahrscheinlichkeiten der Männer in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S05-Altersspezifische-Sterbewahrscheinlichkeiten-Maenner-ab-1871.html?nn=9992070

[7] Altersspezifische Sterbewahrscheinlichkeiten der Frauen in Deutschland. Bundesinstitut für Bevölkerungsforschung (BIB)

https://www.bib.bund.de/DE/Fakten/Fakt/S06-Altersspezifische-Sterbewahrscheinlichkeiten-Frauen-ab-1871.html?nn=9992070

[8] Sterbetafel 2017/2019 – Ergebnisse aus der laufenden Berechnung von Periodensterbetafeln für Deutschland und die Bundesländer 2020. DESTATIS – Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Publikationen/Downloads-Sterbefaelle/periodensterbetafel-erlaeuterung-5126203197004.pdf?__blob=publicationFile

[9] Anzahl der Sterbefälle in Deutschland nach Altersgruppe im Jahr 2018. Statista

https://de.statista.com/statistik/daten/studie/1013307/umfrage/sterbefaelle-in-deutschland-nach-alter/

[10] Zwei Drittel der Corona-Toten betreffen Altenheime. hessenschau

https://www.hessenschau.de/gesellschaft/zwei-drittel-der-corona-toten-im-november-betreffen-altenheime,corona-altenheim-tote-100.html

[11] Mehr als die Hälfte aller Corona-Toten aus Heimen

https://www.sr.de/sr/home/nachrichten/politik_wirtschaft/coronatote_alten-_und_pflegeheime_100.html

[12] Bis zu 86 Prozent der Corona-Toten in Deutschland kommen aus Pflegeheimen

https://www.bz-berlin.de/deutschland/bis-zu-86-prozent-der-corona-toten-in-deutschland-kommen-aus-pflegeheimen

[13] Fast 90 Prozent der Corona-Toten aus Heimen

https://www.n-tv.de/panorama/Fast-90-Prozent-der-Corona-Toten-aus-Heimen-article22245741.htmlr

[14] Fast zwei Drittel sterben im Heim

https://taz.de/Coronatote-in-Berlin/!5747843/

[15] Nach Krisengipfel: Virologe mit scharfer Corona-Kritik an Merkel und Söder – „Weit weg von Realität“

https://www.merkur.de/lokales/muenchen/lockdown-corona-bayern-virologe-corona-strategie-merkel-soeder-krise-gipfel-zr-90175293.html

[16] Corona-Lockdown bis Sommer? Just der Wirtschaftsminister schließt nichts aus

https://www.merkur.de/politik/coronavirus-lockdown-verlaengerung-peter-altmaier-deutschland-mutation-cdu-variante-sommer-90186104.html

[17] Scharfe Kritik an Corona-Politik und Experten – „Andere Sichtweisen offenbar unerwünscht“

https://www.merkur.de/politik/corona-deutschland-gipfel-merkel-laender-massnahmen-pandemie-kritik-experten-wissenschaftler-auswahl-90174423.html

[18] Das „Vorsorgeprinzip“ der Kanzlerin in der Pandemie ist einseitig

https://www.handelsblatt.com/meinung/kommentare/kommentar-das-vorsorgeprinzip-der-kanzlerin-in-der-pandemie-ist-einseitig-/26833548.html

[19] Das Coronavirus: Harmlos? Bedrohlich? Tödlich?

https://www.linkedin.com/pulse/das-coronavirus-harmlos-bedrohlich-t%C3%B6dlich-hieronymus-fischer

[20] Aktuelles zu Corona

https://www.linkedin.com/pulse/aktuelles-zu-corona-hieronymus-fischer/